Hostname: page-component-8448b6f56d-wq2xx Total loading time: 0 Render date: 2024-04-23T07:42:45.101Z Has data issue: false hasContentIssue false

Imprinting and psychiatric genetics: Beware the diagnostic phenotype

Published online by Cambridge University Press:  26 June 2008

Lisa M. Goos
Affiliation:
Psychiatry Research, The Hospital for Sick Children, Toronto, Ontario, M5G 1X8, Canada. lisa.goos@sickkids.ca

Abstract

Studies of the role of imprinted genes in psychological phenomena are long overdue. The target article is comprehensive, presenting a wealth of important and convergent evidence, and provides an excellent point of departure for further research. However, the authors' evidentiary grasp exceeds the explicatory capacity of the proposed model. Greater genotypic and phenotypic precision would significantly enhance its predictive power.

Type
Open Peer Commentary
Copyright
Copyright © Cambridge University Press 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Allen, N. D., Logan, K., Lally, G., Drage, D. J., Norris, M. L. & Keverne, E. B. (1995) Distribution of parthenogenetic cells in the mouse brain and their influence on brain development and behavior. Proceedings of the National Academy of Sciences USA 92:10782–86.CrossRefGoogle ScholarPubMed
Belmonte, M. K. & Carper, R. A. (2006) Monozygotic twins with Asperger syndrome: Differences in behaviour reflect variations in brain structure and function. Brain and Cognition 61(1):110–21.CrossRefGoogle ScholarPubMed
Carter, C. S. & Altemus, M. (1997) Integrative functions of lactational hormones in social behavior and stress management. Annals of the New York Academy of Sciences 807:164–74.CrossRefGoogle ScholarPubMed
Castellanos, F. X. & Tannock, R. (2002) Neuroscience of attention-deficit/hyperactivity disorder: The search for endophenotypes. Nature Reviews Neuroscience 3(8):617–28.CrossRefGoogle ScholarPubMed
Chandana, S. R., Behen, M. E., Juhasz, C., Muzik, O., Rothermel, R. D., Mangner, T. J., Chakraborty, P. K., Chugani, H. T. & Chugani, D. C. (2005) Significance of abnormalities in developmental trajectory and asymmetry of cortical serotonin synthesis in autism. International Journal of Developmental Neuroscience 23 (2–3):171–82.CrossRefGoogle ScholarPubMed
Cheney, D., Seyfarth, R. & Smuts, B. (1986) Social relationships and social cognition in nonhuman primates. Science 234(4782):1361–66.CrossRefGoogle ScholarPubMed
Corbett, B. A., Mendoza, S., Abdullah, M., Wegelin, J. A. & Levine, S. (2006) Cortisol circadian rhythms and response to stress in children with autism. Psychoneuroendocrinology 31(1):5968.CrossRefGoogle ScholarPubMed
Crosbie, J., Perusse, D., Barr, C. L. & Schachar, R. J. (2008) Validating psychiatric endophenotypes: Inhibitory control and attention deficit hyperactivity disorder. Neuroscience and Biobehavioral Reviews 32(1):4055.CrossRefGoogle ScholarPubMed
Feinstein, C. & Singh, S. (2007) Social phenotypes in neurogenetic syndromes. Child and Adolescent Psychiatric Clinics of North America 16:631–47.CrossRefGoogle ScholarPubMed
Goos, L. M., Ezzatian, P. & Schachar, R. (2007) Parent-of-origin effects in attention-deficit hyperactivity disorder. Psychiatry Research 149 (1–3):19.CrossRefGoogle ScholarPubMed
Goos, L. M. & Ragsdale, G. (2008) Genomic imprinting and human psychology: Cognition, behavior and pathology. In: Genomic imprinting, ed. Wilkins, J., pp. 7188. Springer.CrossRefGoogle ScholarPubMed
Gottesman, I. & Gould, T. D. (2003) The endophenotype concept in psychiatry: Etymology and strategic intentions. American Journal of Psychiatry 160(4):636–45.CrossRefGoogle ScholarPubMed
Green, L. A., Fein, D., Modahl, C., Feinstein, C., Waterhouse, L. & Morris, M. (2001) Oxytocin and autistic disorder: Alterations in peptide forms. Biological Psychiatry 50:609–13.CrossRefGoogle ScholarPubMed
Haig, D. (2000a) Genomic imprinting, sex-biased dispersal, and social behavior. In: Evolutionary perspectives on human reproductive behavior, ed. LeCroy, D. & Moller, P.. New York Academy of Sciences. Annals of the New York Academy of Sciences 907:149–63.Google Scholar
Haig, D. & Graham, C. (1991) Genomic imprinting and the strange case of the insulin-like growth factor II receptor. Cell 64:1045–46.Google ScholarPubMed
Haig, D. & Westoby, M. (1989) Parent specific gene expression and the triploid endosperm. American Naturalist 134:147–55.CrossRefGoogle Scholar
Hollander, E., Novotny, S., Hanratty, M., Yaffe, R., DeCaria, C. M., Aronowitz, B. R. & Mosovich, S. (2003) Oxytocin infusion reduces repetitive behaviors in adults with autistic and Asperger's disorders. Neuropsychopharmacology 28(1):193–98.CrossRefGoogle ScholarPubMed
Jacob, S., Brune, C. W., Carter, C. S., Leventhal, B. L., Lord, C. & Cook, E. H. Jr. (2007) Association of the oxytocin receptor gene (OXTR) in Caucasian children and adolescents with autism. Neuroscience Letters 417(1):69.CrossRefGoogle ScholarPubMed
Jansen, L. M. C., Gispen-de Wied, C. C., van der Gaag, R. J. & van Engeland, H. (2003) Differentiation between autism and multiple complex developmental disorder in response to psychosocial stress. Neuropsychopharmacology 28(3):582–90.CrossRefGoogle ScholarPubMed
Keverne, E. B., Fundele, R., Narasimha, M., Barton, S. C. & Surani, M. A. (1996) Genomic imprinting and the differential roles of parental genomes in brain development. Brain Research, Developmental Brain Research 92:91100.CrossRefGoogle ScholarPubMed
Kirsch, P., Esslinger, C., Chen, Q., Mier, D., Lis, S., Siddhanti, S., Gruppe, H., Mattay, V. S., Gallhofer, B. & Meyer-Lindenberg, A. (2005) Oxytocin modulates neural circuitry for social cognition and fear in humans. Journal of Neuroscience 25:11489–93.CrossRefGoogle ScholarPubMed
Kruglyak, L. & Lander, E. S. (1995) High-resolution genetic mapping of complex traits. American Journal of Human Genetics 56(5):1212–23.Google ScholarPubMed
Modahl, C., Green, L. A., Fein, D., Waterhouse, L., Feinstein, C., Morris, M. & Levin, H. (1998) Plasma oxytocin levels in autistic children. Biological Psychiatry 43(4):270–77.CrossRefGoogle ScholarPubMed
Ronald, A., Happé, F., Bolton, P., Butcher, L. M., Price, T. S., Wheelwright, S., Baron-Cohen, S. & Plomin, R. (2006) Genetic heterogeneity between the three components of the autism spectrum: A twin study. Journal of the American Academy of Child and Adolescent Psychiatry 45(6):691–99.CrossRefGoogle ScholarPubMed
Schachar, R. J., Crosbie, J., Barr, C. L., Ornstein, T. J., Kennedy, J., Malone, M., Roberts, W., Ickowicz, A., Tannock, R., Chen, S. & Pathare, T. (2005) Inhibition of motor responses in siblings concordant and discordant for attention deficit hyperactivity disorder. American Journal of Psychiatry 162(6):1076–82.CrossRefGoogle ScholarPubMed
Shao, Y., Cuccaro, M. L., Hauser, E. R., Raiford, K. L., Menold, M. M., Wolpert, C. M., Ravan, S. A., Elston, L., Decena, K., Donnelly, S. L., Abramson, R. K., Wright, H. H., DeLong, G. R., Gilbert, J. R. & Pericak-Vance, M. A. (2003) Fine mapping of autistic disorder to chromosome 15q11–q13 by use of phenotypic subtypes. American Journal of Human Genetics 72(3):539–48.CrossRefGoogle ScholarPubMed
Silk, J. B. (2007) Social components of fitness in primate groups. Science 317(5843): 1347–51.CrossRefGoogle ScholarPubMed
Winslow, J. T. & Insel, T. R. (2004) Neuroendocrine basis of social recognition. Current Opinion in Neurobiology 14(2):248–53.CrossRefGoogle ScholarPubMed
Wu, S., Jia, M., Ruan, Y., Liu, J., Guo, Y., Shuang, M., Gong, X., Zhang, Y., Yang, X. & Zhang, D. (2005) Positive association of the oxytocin receptor gene (OXTR) with autism in the Chinese Han population. Biological Psychiatry 58(1):7477.CrossRefGoogle ScholarPubMed