Hostname: page-component-7c8c6479df-ws8qp Total loading time: 0 Render date: 2024-03-29T07:40:14.966Z Has data issue: false hasContentIssue false

Development of Combined Optical Cell and Sieverts-type Apparatus for in-situ Measurement of Hydrogen Storage Materials

Published online by Cambridge University Press:  31 January 2011

Chun Chiu
Affiliation:
chun.chiu@nist.gov, NIST, MSEL, Gaithersburg, Maryland, United States
Jason Hattrick-Simpers
Affiliation:
jhsimper@nist.gov, NIST, MSEL, Gaithersburg, Maryland, United States
Edwin Heilweil
Affiliation:
eheilweil@nist.gov, NIST, Physics Laboratory, Gaithersburg, Maryland, United States
Leonid Bendersky
Affiliation:
leonid.bendersky@nist.gov, NIST, MSEL, Gaithersburg, Maryland, United States
Get access

Abstract

A parallel high-sensitivity hydrogen sorption, and in situ Raman/IR emissivity measurement system has been developed using a stainless-steel sample cell with a sapphire window to act as a bridge between the PCT and optical measurements. The cell can be pressurized up to 4.5 MPa and heated up to 723 K. The system can measure small changes in hydrogen content, down to 0.5 μg, allowing for characterization of small quantities of powers and thin films. Hydrogen desorption in LiNH2 - LiBH4 - MgH2 nanocomposites has been studied by in-situ Raman and PCT measurement, while that of MgH2 powers and thin films has been studied by in-situ PCT and IR emissivity. In powder samples, qualitative trend is observed between changes in the Raman peak intensity/IR emissivity and the amount of hydrogen absorbed or desorbed.

Type
Research Article
Copyright
Copyright © Materials Research Society 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.DOE 2009 annual merit review proceedings hydrogen storage. http://hydrogendoedev.nrel.gov/annual_review09_storage.htmlGoogle Scholar
2.Hydride materials data base. http://hydpark.ca.sandia.gov/MaterialsFrame.htmlGoogle Scholar
3. Sandrock, G.. J. Alloys Compd. 293–295 (1999) 877888.Google Scholar
4. Schlapbach, L. Züttel, A.. Nature 414 (2001) 353358.Google Scholar
5. Bogdanoviæ, B. and Schwickardi, M.. J. Alloys Compd. 253–254 (1997) 19.Google Scholar
6. Zaluski, L. Zalyska, A. Strim-Olsen, J.O.. J. Alloys Compd. 290 (1999) 7178.Google Scholar
7. Liang, G. et al. , Alloys, J. Compd. 292 (1999) 247252.Google Scholar
8. Zhou, W. et al. , J. Phys. Chem. C. 111 (2007) 1613116137.Google Scholar
9. Ludwig, A. Cao, J. Savan, A. and Ehmann, M. J. Alloys Compd. 446 (2007) 516.Google Scholar
10. Guerin, S. Hayden, B. E. and Smith, D. C. A. J. Comb. Chem. 10 (2008) 37.Google Scholar
11. Gremaud, R. et al. , Adv. Mater. 19 (2007) 2813.Google Scholar
12. Dam, B. Gremaud, R. Broedersz, C. and Griessen, R. Scr. Mater. 56 (2007) 853.Google Scholar
13. Olk, C. H. Tibbetts, G. G. Simon, D. and Moleski, J. J. J. Appl. Phys. 94 (2003) 720.Google Scholar
14. Oguchi, H. Heilweil, E.J. Josell, D. Bendersky, L.A. J. Alloys Compd. 477 (2009) 815.Google Scholar
15. Oguchi, H. et al. , Rev. Sci. Instrum. 80 (2009) 073707.Google Scholar
16. Hattrick-Simpers, J. R. et al. , Article in preparation.Google Scholar
17. Yang, J. et al. , Angew. Chem. Int. Ed. 47 (2008) 882887.Google Scholar
18. Luo, W. and Sickafoose, S. Journal of Alloys and Compounds 407 (2006) 274281.Google Scholar
19. Niemann, M. U. et al. Int. J. of Hydrogen Energy (In Press, Corrected Proof).Google Scholar
20. Hattrick-Simpers, J. R. et al. , Journal of Alloys and Compounds (In Press) doi:10.1016/j.jallcom.2009.10.054Google Scholar
21. Ibos, L. et al. , Meas. Sci. Technol. 17 (2006) 2950.Google Scholar
22. Sabuga, W. Todtenhaupt, R. High Temp.-High Pressures 33 (2001) 261.Google Scholar