Hostname: page-component-7c8c6479df-ph5wq Total loading time: 0 Render date: 2024-03-28T12:36:09.530Z Has data issue: false hasContentIssue false

In Situ Scanning Probe Microscopy Nanomechanical Testing

Published online by Cambridge University Press:  31 January 2011

Get access

Abstract

Scanning probe microscopy (SPM) has undergone rapid advancements since its invention almost three decades ago. Applications have been extended from topographical imaging to the measurement of magnetic fields, frictional forces, electric potentials, capacitance, current flow, piezoelectric response and temperature (to name a few) of inorganic and organic materials, as well as biological entities. Here, we limit our focus to mechanical characterization by taking advantage of the unique imaging and force/displacement sensing capabilities of SPM. This article presents state-of-the-art in situ SPM nanomechanical testing methods spanning (1) probing the mechanical properties of individual one-dimensional nanostructures; (2) mapping local, nanoscale strain fields, fracture, and wear damage of nanostructured heterogeneous materials; and (3) measuring the interfacial strength of nanostructures. The article highlights several novel SPM nanomechanical testing methods, which are expected to lead to further advancements in nanoscale mechanical testing and instrumentation toward the exploration and fundamental understanding of mechanical property size effects in nanomaterials.

Type
Research Article
Copyright
Copyright © Materials Research Society 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Li, X.D., Bhushan, B., Mater. Charact. 48, 11 (2002).CrossRefGoogle Scholar
2.Li, X.D., Gao, H.S., Murphy, C.J., Caswell, K.K., Nano Lett. 3, 1495 (2003).CrossRefGoogle Scholar
3.Tao, X.Y., Li, X.D., Nano Lett. 8, 505 (2008).CrossRefGoogle Scholar
4.Chen, X.Q., Xu, Z.H., Li, X.D., Shaibat, M.A., Ishii, Y., Ruoff, R. S., Carbon 45, 416 (2007).CrossRefGoogle Scholar
5.Ozkan, T., Naraghi, M., Chasiotis, I., Carbon 48, 239 (2010).CrossRefGoogle Scholar
6.Naraghi, M., Chasiotis, I., Dzenis, Y., Wen, Y., Kahn, H., Appl. Phys. Lett. 91, 151901 (2007).CrossRefGoogle Scholar
7.Naraghi, M., Chasiotis, I., Dzenis, Y., Wen, Y., Kahn, H., Rev. Sci. Instrum. 78, 0851081 (2007).CrossRefGoogle Scholar
8.Chasiotis, I., Atomic Force Microscopy in Solid Mechanics, Handbook for Experimental Solid Mechanics, Sharpe, W.N. Jr., Ed. (Springer, NY, 2008), pp. 409443.Google Scholar
9.Huey, B.D., Sigmund, W., JOM 59, 11 (2007).CrossRefGoogle Scholar
10.Salvetat, J.P., Kulik, A.J., Bonard, J.M., Briggs, G.A.D., Stockli, T., Metenier, K., Bonnamy, S., Beguin, F., Burnham, N.A., Forro, L., Adv. Mater. 11, 161 (1999).3.0.CO;2-J>CrossRefGoogle Scholar
11.Salvetat, J.P., Briggs, G.A.D., Bonard, J.M., Bacsa, R.R., Kulik, A.J., Stockli, T., Burnham, N.A., Forro, L., Phys. Rev. Lett. 82, 944 (1999).CrossRefGoogle Scholar
12.Wong, E.W., Sheehan, P.E., Lieber, C.M., Science 277, 1971 (1997).CrossRefGoogle Scholar
13.Wu, B., Heidelberg, A., Boland, J.J., Nat. Mater. 4, 525 (2005).CrossRefGoogle Scholar
14.Ni, H., Li, X.D., Gao, H.S., Appl. Phys. Lett. 88, 043108 (2006).CrossRefGoogle Scholar
15.Ni, H., Li, X.D., Cheng, G.S., Klie, R., J. Mater. Res. 21, 2882 (2006).CrossRefGoogle Scholar
16.Ni, H., Li, X.D., Nanotechnology 17, 3591 (2006).CrossRefGoogle Scholar
17.Heidelberg, A., Ngo, L.T., Wu, B., Phillips, M.A., Sharma, S., Kamins, T.I., Sader, J.E., Boland, J.J.. Nano Lett. 6, 1101 (2006).CrossRefGoogle Scholar
18.Ni, H., Li, X.D.. J. Nano Res. 1, 10 (2008).CrossRefGoogle Scholar
19.Zhou, P., Wu, C.W., Li, X.D., Meas. Sci. Technol. 19 (2008).Google Scholar
20.Song, J.H., Wang, X.D., Riedo, E., Wang, Z.L., Nano Lett. 5, 1954 (2005).CrossRefGoogle Scholar
21.Barth, S., Harnagea, C., Mathur, S., Rosei, F., Nanotechnology 20, 115705 (2009).CrossRefGoogle Scholar
22.Gordon, M.J., Baron, T., Dhalluin, F., Gentile, P., Ferret, P., Nano Lett. 9, 525 (2009).CrossRefGoogle Scholar
23.Lucas, M., Mai, W.J., Yang, R.S., Wang, Z.L., Riedo, E., Nano Lett. 7, 1314 (2007).CrossRefGoogle Scholar
24.Lucas, M., Mai, W.J., Yang, R.S., Wang, Z.L., Riedo, E., Philos. Mag. 87, 2135 (2007).CrossRefGoogle Scholar
25.Li, X.D., Chang, W.C., Chao, Y.J., Wang, R.Z., M. Chang. Nano Lett. 4, 613 (2004).CrossRefGoogle Scholar
26.Li, X.D., Xu, Z.H., Wang, R.Z., Nano Lett. 6, 2301 (2006).CrossRefGoogle Scholar
27.Wang, X.N., Niu, Z.W., Li, S.Q., Wang, Q., Li, X.D., J. Biomed. Mater. Res. Part A 87A, 8 (2008).CrossRefGoogle Scholar
28.Rong, J.H., Oberbeck, F., Wang, X.N., Li, X.D., Oxsher, J., Niu, Z.W., Q. Wang. J. Mater. Chem. 19, 2841 (2009).CrossRefGoogle Scholar
29.Wang, G.F., Li, X.D., Appl. Phys. Lett. 91, 231912 (2007).CrossRefGoogle Scholar
30.Wang, G.F., Li, X.D., J. Appl. Phys. 104, 113517 (2008).CrossRefGoogle Scholar
31.Stan, G., Ciobanu, C.V., Parthangal, P.M., Cook, R.F., Nano Lett. 7, 3691 (2007).CrossRefGoogle Scholar
32.Chasiotis, I., Knauss, W.G., Exp. Mech. 42, 51 (2002).CrossRefGoogle Scholar
33.Cho, S., Chasiotis, I., Friedmann, T.A., Sullivan, J.P., J. Micromech. Microeng. 15, 728 (2005).CrossRefGoogle Scholar
34.Chasiotis, I., IEEE Trans. Device Mater. Reliab. 4, 176 (2004).CrossRefGoogle Scholar
35.Cho, S.W., Cardenas-Garcia, J.F., Chasiotis, I., Sens. Actuators, A 120, 163 (2005).CrossRefGoogle Scholar
36.Cho, S.W., Chasiotis, I., Exp. Mech. 47, 37 (2007).CrossRefGoogle Scholar
37.Chen, Q., Chasiotis, I., Chen, C., Roy, A., Compos. Sci. Technol. 68, 3137 (2008).CrossRefGoogle Scholar
38.Guilloteau, E., Charrue, H., Creuzet, F., Europhys. Lett. 34, 549 (1996).CrossRefGoogle Scholar
39.Marliere, C., Prades, S., Celarie, F., Dalmas, D., Bonamy, D., Guillot, C., Bouchaud, E., J. Phys. Condens. Matter 15, S2377 (2003).CrossRefGoogle Scholar
40.Prades, S., Bonamy, D., Dalmas, D., Bouchaud, E., Guillot, C., Int. J. Solids Struct. 42, 637 (2005).CrossRefGoogle Scholar
41.Tanaka, Y., Kawauchi, Y., Kurokawa, T., Furukawa, H., Okajima, T., Gong, J.P., Macromol. Rapid Commun. 29, 1514 (2008).CrossRefGoogle Scholar
42.Chasiotis, I., Cho, S.W., Jonnalagadda, K., J. Appl. Mech. Trans. ASME 73, 714 (2006).CrossRefGoogle Scholar
43.Cho, S.W., Jonnalagadda, K., Chasiotis, I., Fatigue Fract. Eng. Mater. Struct. 30, 21 (2007).CrossRefGoogle Scholar
44.Li, X.D., Xu, W.J., Sutton, M.A., Mello, M., IEEE Trans. Nanotechnol. 6, 4 (2007).CrossRefGoogle Scholar
45.Li, X.D., Xu, W.J., Sutton, M.A., Mello, M., Mater. Sci. Technol. 22, 835 (2006).CrossRefGoogle Scholar
46.Xu, Z.H., Sutton, M.A., Li, X.D., Acta Mater. 56, 6304 (2008).CrossRefGoogle Scholar
47.Hirakata, H., Takahashi, Y., Matsumoto, S., Kitamura, T., Eng. Fract. Mech. 73, 2698 (2006).CrossRefGoogle Scholar
48.Hirakata, H., Kitamura, T., Yamamoto, Y., JSME Int. J., Ser. A 47, 324 (2004).CrossRefGoogle Scholar
49.Hirakata, H., Takahashi, Y., Van Truong, D., Kitamura, T., Int. J. Fract. 145, 261 (2007).CrossRefGoogle Scholar
50.Sumigawa, T., Hirakata, H., Takemura, M., Matsumoto, S., Suzuki, M., Kitamura, T., Eng. Fract. Mech. 75, 3073 (2008).CrossRefGoogle Scholar