Hostname: page-component-7c8c6479df-ws8qp Total loading time: 0 Render date: 2024-03-28T20:35:11.465Z Has data issue: false hasContentIssue false

Ultramicroporous silicon nitride ceramics for CO2 capture

Published online by Cambridge University Press:  26 June 2015

Cristina Schitco*
Affiliation:
Fachbereich Material-und Geowissenschaften, Technische Universität Darmstadt, 64287 Darmstadt, Germany
Mahdi Seifollahi Bazarjani
Affiliation:
Fachgebiet Keramische Werkstoffe, Fakultät III Prozesswissenschaften, Institut für Werkstoffwissenschaften und -technologien, Technische Universität Berlin, 10623 Berlin, Germany
Ralf Riedel
Affiliation:
Fachbereich Material-und Geowissenschaften, Technische Universität Darmstadt, 64287 Darmstadt, Germany
Aleksander Gurlo
Affiliation:
Fachgebiet Keramische Werkstoffe, Fakultät III Prozesswissenschaften, Institut für Werkstoffwissenschaften und -technologien, Technische Universität Berlin, 10623 Berlin, Germany
*
a)Address all correspondence to this author. e-mail: schitco@materials.tu-darmstadt.de
Get access

Abstract

Carbon dioxide (CO2) capture is regarded as one of the biggest challenges of the 21st century; therefore, intense research effort has been dedicated in the area of developing new materials for efficient CO2 capture. Here, we report high CO2 capture capacity in the low region of applied CO2 pressures observed with ultramicroporous silicon nitride-based material. The latter is synthesized by a facile one-step NH3-assisted thermolysis of a polysilazane. Our newly developed material for CO2 capture has the following outstanding properties: (i) one of the highest CO2 capture capacities per surface area of micropores, with a CO2 uptake of 2.35 mmol g−1 at 273 K and 1 bar (ii) a low isosteric heat of adsorption (27.6 kJ mol−1), which is independent from the fractional surface coverage of CO2. Furthermore, we demonstrate that the pore size plays a crucial role in elevating the CO2 adsorption capacity, surpassing the effect of Brunauer–Emmett–Teller specific surface area.

Type
Articles
Copyright
Copyright © Materials Research Society 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Jacobson, M.Z.: Review of solutions to global warming, air pollution, and energy security. Energy Environ. Sci. 2(2), 148 (2009).CrossRefGoogle Scholar
D'Alessandro, D.M., Smit, B., and Long, J.R.: Carbon dioxide capture: Prospects for new materials. Angew. Chem., Int. Ed. 49(35), 6058 (2010).Google Scholar
Liang, Z., Marshall, M., and Chaffee, A.L.: CO2 adsorption-based separation by metal organic framework (Cu-BTC) versus zeolite (13X). Energy Fuels 23(5), 2785 (2009).CrossRefGoogle Scholar
Morris, R.E. and Wheatley, P.S.: Gas storage in nanoporous materials. Angew. Chem., Int. Ed. 47(27), 4966 (2008).CrossRefGoogle ScholarPubMed
Agency, I.E.: Prospects for Carbon Dioxide Capture and Storage (International Energy Agency, Organisation for Economic Cooperation and Development, Paris, 2004).Google Scholar
Granite, E.J. and Pennline, H.W.: Photochemical removal of mercury from flue gas. Ind. Eng. Chem. Res. 41(22), 5470 (2002).CrossRefGoogle Scholar
Markewitz, P., Kuckshinrichs, W., Leitner, W., Linssen, J., Zapp, P., Bongartz, R., Schreiber, A., and Muller, T.E.: Worldwide innovations in the development of carbon capture technologies and the utilization of CO2 . Energy Environ. Sci. 5(6), 7281 (2012).Google Scholar
Kohl, A.L. and Nielsen, R.: Gas Purification (Gulf Pub., Houston, 1997).Google Scholar
Hunt, A.J., Sin, E.H.K., Marriott, R., and Clark, J.H.: Generation, capture, and utilization of industrial carbon dioxide. ChemSusChem 3(3), 306 (2010).Google Scholar
Sayari, A. and Belmabkhout, Y.: Stabilization of amine-containing CO2 adsorbents: Dramatic effect of water vapor. J. Am. Chem. Soc. 132(18), 6312 (2010).Google Scholar
Yang, H.W., Khan, A.M., Yuan, Y.Z., and Tsang, S.C.: Mesoporous silicon nitride for reversible CO2 capture. Chem. Asian J. 7(3), 498 (2012).CrossRefGoogle ScholarPubMed
Jadhav, P.D., Chatti, R.V., Biniwale, R.B., Labhsetwar, N.K., Devotta, S., and Rayalu, S.S.: Monoethanol amine modified zeolite 13X for CO2 adsorption at different temperatures. Energy Fuels 21(6), 3555 (2007).CrossRefGoogle Scholar
Caskey, S.R., Wong-Foy, A.G., and Matzger, A.J.: Dramatic tuning of carbon dioxide uptake via metal substitution in a coordination polymer with cylindrical pores. J. Am. Chem. Soc. 130(33), 10870 (2008).Google Scholar
Khatri, R.A., Chuang, S.S.C., Soong, Y., and Gray, M.: Thermal and chemical stability of regenerable solid amine sorbent for CO2 capture. Energy Fuels 20(4), 1514 (2006).CrossRefGoogle Scholar
Satyapal, S., Filburn, T., Trela, J., and Strange, J.: Performance and properties of a solid amine sorbent for carbon dioxide removal in space life support applications. Energy Fuels 15(2), 250 (2001).Google Scholar
Hutson, N.D., Speakman, S.A., and Payzant, E.A.: Structural effects on the high temperature adsorption of CO2 on a synthetic hydrotalcite. Chem. Mater. 16(21), 4135 (2004).CrossRefGoogle Scholar
Ochoa-Fernández, E., Rønning, M., Grande, T., and Chen, D.: Synthesis and CO2 capture properties of nanocrystalline lithium zirconate. Chem. Mater. 18(25), 6037 (2006).Google Scholar
Nugent, P., Belmabkhout, Y., Burd, S.D., Cairns, A.J., Luebke, R., Forrest, K., Pham, T., Ma, S., Space, B., Wojtas, L., Eddaoudi, M., and Zaworotko, M.J.: Porous materials with optimal adsorption thermodynamics and kinetics for CO2 separation. Nature 495(7439), 80 (2013).Google Scholar
Merel, J., Clausse, M., and Meunier, F.: Experimental investigation on CO2 post-combustion capture by indirect thermal swing adsorption using 13X and 5A zeolites. Ind. Eng. Chem. Res. 47(1), 209 (2008).Google Scholar
Plaza, M.G., Pevida, C., Arenillas, A., Rubiera, F., and Pis, J.J.: CO2 capture by adsorption with nitrogen enriched carbons. Fuel 86(14), 2204 (2007).Google Scholar
Kintisch, E.: Power generation - Making dirty coal plants cleaner. Science 317(5835), 184 (2007).Google Scholar
Himeno, S., Komatsu, T., and Fujita, S.: High-pressure adsorption equilibria of methane and carbon dioxide on several activated carbons. J. Chem. Eng. Data 50(2), 369 (2005).Google Scholar
Hyun, S.H. and Danner, R.P.: Equilibrium adsorption of ethane, ethylene, isobutane, carbon-dioxide, and their binary-mixtures on 13X molecular-sieves. J. Chem. Eng. Data 27(2), 196 (1982).CrossRefGoogle Scholar
Thote, J.A., Iyer, K.S., Chatti, R., Labhsetwar, N.K., Biniwale, R.B., and Rayalu, S.S.: In situ nitrogen enriched carbon for carbon dioxide capture. Carbon 48(2), 396 (2010).CrossRefGoogle Scholar
Li, Q., Yang, J., Feng, D., Wu, Z., Wu, Q., Park, S.S., Ha, C-S., and Zhao, D.: Facile synthesis of porous carbon nitride spheres with hierarchical three-dimensional mesostructures for CO2 capture. Nano Res. 3(9), 632 (2010).Google Scholar
Jalilov, A.S., Ruan, G., Hwang, C.C., Schipper, D.E., Tour, J.J., Li, Y., Fei, H., Samuel, E.L., and Tour, J.M.: Asphalt-derived high surface area activated porous carbons for carbon dioxide capture. ACS Appl. Mater. Interfaces 7(2), 1376 (2015).Google Scholar
Seifollahi Bazarjani, M., Kleebe, H-J., Müller, M.M., Fasel, C., Baghaie Yazdi, M., Gurlo, A., and Riedel, R.: Nanoporous silicon oxycarbonitride ceramics derived from polysilazanes in situ modified with nickel nanoparticles. Chem. Mater. 23(18), 4112 (2011).Google Scholar
Bazarjani, M.S., Muller, M.M., Kleebe, H-J., Fasel, C., Riedel, R., and Gurlo, A.: In situ formation of tungsten oxycarbide, tungsten carbide and tungsten nitride nanoparticles in micro- and mesoporous polymer-derived ceramics. J. Mater. Chem. A 2(27), 10454 (2014).Google Scholar
Colombo, P.: Engineering porosity in polymer-derived ceramics. J. Eur. Ceram. Soc. 28(7), 1389 (2008).Google Scholar
Schmidt, H., Koch, D., Grathwohl, G., and Colombo, P.: Micro-/macroporous ceramics from preceramic precursors. J. Am. Ceram. Soc. 84(10), 2252 (2001).Google Scholar
Wilhelm, M., Soltmann, C., Koch, D., and Grathwohl, G.: Ceramers - Functional materials for adsorption techniques. J. Eur. Ceram. Soc. 25(2–3), 271 (2005).CrossRefGoogle Scholar
Bradley, J.S., Vollmer, O., Rovai, R., Specht, U., and Lefebvre, F.: High surface area silicon imidonitrides: A new class of microporous solid base. Adv. Mater. 10(12), 938 (1998).Google Scholar
Miyajima, K., Eda, T., Ohta, H., Ando, Y., Nagaya, S., Ohba, T., and Iwamoto, Y.: Development of Si-N based hydrogen separation membrane. In Advances in Polymer Derived Ceramics and Composites. (John Wiley & Sons, Hoboken, NJ, 2010); p. 87.Google Scholar
Schitco, C., Bazarjani, M.S., Riedel, R., and Gurlo, A.: NH3-assisted synthesis of microporous silicon oxycarbonitride ceramics from preceramic polymers: A combined N2 and CO2 adsorption and small angle X-ray scattering study. J. Mater. Chem. A 3(2), 805 (2015).Google Scholar
Toth, J.: Adsorption Theory, Modeling and Analysis (Marcel Dekker, New York, 2002).Google Scholar
Kaneko, K.: Determination of pore-size and pore-size distribution: 1. Adsorbents and catalysts. J. Membr. Sci. 96(1–2), 59 (1994).Google Scholar
Uemura, K., Maeda, A., Maji, T.K., Kanoo, P., and Kita, H.: Syntheses, crystal structures and adsorption properties of ultramicroporous coordination polymers constructed from hexafluorosilicate ions and pyrazine. Eur. J. Inorg. Chem. 2009(16), 2329 (2009).Google Scholar
Forrest, K.A., Pham, T., Hogan, A., McLaughlin, K., Tudor, B., Nugent, P., Burd, S.D., Mullen, A., Cioce, C.R., Wojtas, L., Zaworotko, M.J., and Space, B.: Computational studies of CO2 sorption and separation in an ultramicroporous metal-organic material. J. Phys. Chem. C 117(34), 17687 (2013).CrossRefGoogle Scholar
Sing, K.S.W., Everett, D.H., Haul, R.A.W., Moscou, L., Pierotti, R.A., Rouquerol, J., and Siemieniewska, T.: Reporting physisorption data for gas solid systems with special reference to the determination of surface-area and porosity (Recommendations 1984). Pure Appl. Chem. 57(4), 603 (1985).CrossRefGoogle Scholar
Williams, H.M., Dawson, E.A., Barnes, P.A., Rand, B., Brydson, R.M.D., and Brough, A.R.: High temperature ceramics for use in membrane reactors: The development of microporosity during the pyrolysis of polycarbosilanes. J. Mater. Chem. 12(12), 3754 (2002).Google Scholar
Cazorla-Amorós, D., Alcañiz-Monge, J., and Linares-Solano, A.: Characterization of activated carbon fibers by CO2 adsorption. Langmuir 12(11), 2820 (1996).CrossRefGoogle Scholar
Thommes, M.: Physical adsorption characterization of nanoporous materials. Chem. Ing. Tech. 82(7), 1059 (2010).Google Scholar
Jagiello, J. and Thommes, M.: Comparison of DFT characterization methods based on N2, Ar, CO2, and H2 adsorption applied to carbons with various pore size distributions. Carbon 42(7), 1227 (2004).Google Scholar
Zhang, C., Song, W., Sun, G., Xie, L., Wang, J., Li, K., Sun, C., Liu, H., Snape, C.E., and Drage, T.: CO2 capture with activated carbon grafted by nitrogenous functional groups. Energy Fuels 27(8), 4818 (2013).Google Scholar
Supplementary material: File

Schitco supplementary material S1

Supplementary Material

Download Schitco supplementary material S1(File)
File 75.8 KB