Hostname: page-component-8448b6f56d-xtgtn Total loading time: 0 Render date: 2024-04-25T01:36:30.742Z Has data issue: false hasContentIssue false

The role of the immunological background of mice in the genetic variability of Schistosoma mansoni as detected by random amplification of polymorphic DNA

Published online by Cambridge University Press:  03 July 2014

I.L. Cossa-Moiane*
Affiliation:
Laboratory of Molecular Parasitology, Departamento de Plataformas Tecnológicas, Instituto Nacional de Saúde, Ministério da Saúde, Avenida Eduardo Mondlane, 1008, PO BOX 264, Maputo, Mozambique
T. Mendes
Affiliation:
Medical Parasitology Unit, Instituto de Higiene e Medicina Tropical/Unidade de Parasitologia e Microbiologia Médicas, Universidade Nova de Lisboa, Rua da Junqueira, 100, 1349-008Lisboa, Portugal
T.M. Ferreira
Affiliation:
Medical Parasitology Unit, Instituto de Higiene e Medicina Tropical/Unidade de Parasitologia e Microbiologia Médicas, Universidade Nova de Lisboa, Rua da Junqueira, 100, 1349-008Lisboa, Portugal
I. Mauricio
Affiliation:
Medical Parasitology Unit, Instituto de Higiene e Medicina Tropical/Unidade de Parasitologia e Microbiologia Médicas, Universidade Nova de Lisboa, Rua da Junqueira, 100, 1349-008Lisboa, Portugal
M. Calado
Affiliation:
Medical Parasitology Unit, Instituto de Higiene e Medicina Tropical/Unidade de Parasitologia e Microbiologia Médicas, Universidade Nova de Lisboa, Rua da Junqueira, 100, 1349-008Lisboa, Portugal
A. Afonso
Affiliation:
Medical Parasitology Unit, Instituto de Higiene e Medicina Tropical/Unidade de Parasitologia e Microbiologia Médicas, Universidade Nova de Lisboa, Rua da Junqueira, 100, 1349-008Lisboa, Portugal Universidade de São Paulo (USP), Instituto de Química de São Carlos, DQFM, Grupo de Bioanalítica, Microfabricação e Separações, São Carlos, São Paulo, Brazil; Universidade Federal de São Carlos, Departamento de Morfologia e Patologia, São Carlos, São Paulo, Brazil
S. Belo
Affiliation:
Medical Parasitology Unit, Instituto de Higiene e Medicina Tropical/Unidade de Parasitologia e Microbiologia Médicas, Universidade Nova de Lisboa, Rua da Junqueira, 100, 1349-008Lisboa, Portugal

Abstract

Schistosomiasis is a parasitic disease caused by flatworms of the genus Schistosoma. Among the Schistosoma species known to infect humans, S. mansoni is the most frequent cause of intestinal schistosomiasis in sub-Saharan Africa and South America: the World Health Organization estimates that about 200,000 deaths per year result from schistosomiasis in sub-Saharan Africa alone. The Schistosoma life cycle requires two different hosts: a snail as intermediate host and a mammal as definitive host. People become infected when they come into contact with water contaminated with free-living larvae (e.g. when swimming, fishing, washing). Although S. mansoni has mechanisms for escaping the host immune system, only a minority of infecting larvae develop into adults, suggesting that strain selection occurs at the host level. To test this hypothesis, we compared the Belo Horizonte (BH) strain of S. mansoni recovered from definitive hosts with different immunological backgrounds using random amplification of polymorphic DNA–polymerase chain reaction (RAPD-PCR). Schistosoma mansoni DNA profiles of worms obtained from wild-type (CD1 and C57BL/6J) and mutant (Jα18− / − and TGFβRIIdn) mice were analysed. Four primers produced polymorphic profiles, which can therefore potentially be used as reference biomarkers. All male worms were genetically distinct from females isolated from the same host, with female worms showing more specific fragments than males. Of the four host-derived schistosome populations, female and male adults recovered from TGFβRIIdn mice showed RAPD-PCR profiles that were most similar to each other. Altogether, these data indicate that host immunological backgrounds can influence the genetic diversity of parasite populations.

Type
Research Papers
Copyright
Copyright © Cambridge University Press 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Arosa, F.A., Cardoso, E.M. & Pacheco, F.C. (2007) Fundamentos de imunologia. Lisboa-Porto, Lidel - edições técnicas.Google Scholar
Avise, J.C. (2004) Molecular markers, natural history and evolution. 2nd edn.684 pp. Sunderland, Massachusetts, Sinauer.Google Scholar
Bardakci, F. (2000) Random amplified polymorphic DNA (RAPD) markers. Turkish Journal of Biology 25, 185196.Google Scholar
Berriman, M., Haas, B.J., LoVerde, P.T., Wilson, R.A., Dillon, G.P., Cerqueira, G.C., Mashiyama, S.T., Al-Lazikani, B., Andrade, L.F., Ashton, P.D., Aslett, M.A., Bartholomeu, D.C., Blandin, G., Caffrey, C.R., Coghlan, A., Coulson, R., Day, T.A., Delcher, A., DeMarco, R., Djikeng, A., Eyre, T., Gamble, J.A., Ghedin, E., Gu, Y., Hertz-Fowler, C., Hirai, H., Hirai, Y., Houston, R., Ivens, A., Johnston, D.A., Lacerda, D., Macedo, C.D., McVeigh, P., Ning, Z., Oliveira, G., Overington, J.P., Parkhill, J., Pertea, M., Pierce, R.J., Protasio, A.V., Quail, M.A., Rajandream, M.A., Rogers, J., Sajid, M., Salzberg, S.L., Stanke, M., Tivey, A.R., White, O., Williams, D.L., Wortman, J., Wu, W., Zamanian, M., Zerlotini, A., Fraser-Liggett, C.M., Barrell, B.G. & El-Sayed, N.M. (2009) The genome of the blood fluke Schistosoma mansoni. Nature 460, 352358.CrossRefGoogle ScholarPubMed
Cardoso, F.C., Macedo, G.C., Gava, E., Kitten, G.T., Mati, V.L., de Melo, A.L., Caliari, M.V., Almeida, G.T., Venancio, T.M., Verjovski-Almeida, S. & Oliveira, S.C. (2008) Schistosoma mansoni tegument protein Sm29 is able to induce a Th1-type of immune response and protection against parasite infection. PLoS Neglected Tropical Disease 2, e308.CrossRefGoogle ScholarPubMed
Duvall, R.H. & DeWitt, W.B. (1967) An improved perfusion technique for recovering adult schistosomes from laboratory animals. American Journal of Tropical Medicine and Hygiene 16, 483486.CrossRefGoogle ScholarPubMed
Dwivedi, V.P., Tousif, S., Bhattacharya, D., Prasad, D.V., Van Kaer, L., Das, J. & Das, G. (2011) Transforming growth factor-beta protein inversely regulates in vivo differentiation of interleukin-17 (IL-17)-producing CD4+ and CD8+T cells. Journal of Biological Chemistry 287, 29432947.CrossRefGoogle ScholarPubMed
Felsenstein, J. (1989) PHYLIPPhylogeny Inference Package (Version 3.2). Cladistics 5, 164166.Google Scholar
Gentile, R. & Oliveira, G. (2008) Brazilian studies on the genetics of Schistosoma mansoni. Acta Tropica 108, 175178.CrossRefGoogle ScholarPubMed
Guerrant, R.L., Walker, D.H. & Weller, P.F. (2011) Tropical infectious diseases: Principles, pathogens and practice. 3rd edn. pp. 848853. Edinburgh, Sauders.Google Scholar
He, Y.X., Salafsky, B. & Ramaswamy, K. (2001) Host-parasite relationships of Schistosoma japonicum in mammalian hosts. Trends in Parasitology 17, 320324.CrossRefGoogle ScholarPubMed
Karanja, D.M., Colley, D.G., Nahlen, B.L., Ouma, J.H. & Secor, W.E. (1997) Studies on schistosomiasis in western Kenya: I. Evidence for immune-facilitated excretion of schistosome eggs from patients with Schistosoma mansoni and human immunodeficiency virus co-infections. American Journal of Tropical Medicine and Hygiene 56, 515521.CrossRefGoogle Scholar
King, C. (2011) Schistosomiasis. pp. 848853in Guerrant, R.L., Walker, D.H. & Weller, P.F. (Eds) Tropical infectious diseases: Principles, pathogens and practice. Edinburgh, Sauders.CrossRefGoogle Scholar
Mallevaey, T., Fontaine, J., Breuilh, L., Paget, C., Castro-Keller, A., Vendeville, C., Capron, M., Leite-de-Moraes, M., Trottein, F. & Faveeuw, C. (2007) Invariant and noninvariant natural killer T cells exert opposite regulatory functions on the immune response during murine schistosomiasis. Infection and Immunity 75, 21712180.CrossRefGoogle ScholarPubMed
Mi, S., Li, Z., Yang, H.Z., Liu, H., Wang, J.P., Ma, Y.G., Wang, X.X., Liu, H.Z., Sun, W. & Hu, Z.W. (2011) Blocking IL-17A promotes the resolution of pulmonary inflammation and fibrosis via TGF-beta1-dependent and -independent mechanisms. Journal of Immunology 187, 30033014.CrossRefGoogle ScholarPubMed
Nino Incani, R., Morales, G. & Cesari, I.M. (2001) Parasite and vertebrate host genetic heterogeneity determine the outcome of infection by Schistosoma mansoni. Parasitology Research 87, 131137.CrossRefGoogle ScholarPubMed
Oliveira, K.C., Carvalho, M.L., Verjovski-Almeida, S. & LoVerde, P.T. (2012) Effect of human TGF-beta on the gene expression profile of Schistosoma mansoni adult worms. Molecular and Biochemical Parasitology 183, 132139.CrossRefGoogle ScholarPubMed
Osman, A., Niles, E.G., Verjovski-Almeida, S. & LoVerde, P.T. (2006) Schistosoma mansoni TGF-beta receptor II: role in host ligand-induced regulation of a schistosome target gene. PLoS Pathogens 2, e54.CrossRefGoogle ScholarPubMed
Pillay, D. & Pillay, B. (1994) Schistosoma mansoni: PCR amplification shows intraspecific variation among geographical isolates. Experimental Parasitology 79, 5758.CrossRefGoogle ScholarPubMed
Rey, L. (2010) Bases da parasitologia médica. 3rd edn. pp. 165171. Rio de Janeiro, Guanabara-Koogan.Google Scholar
Smith, K.R. (2002) Animal genetic manipulation – a utilitarian response. Bioethics 16, 5571.CrossRefGoogle ScholarPubMed
Stothard, J.R., Hughes, S. & Rollinson, D. (1996) Variation within the internal transcribed spacer (ITS) of ribosomal DNA genes of intermediate snail hosts within the genus Bulinus (Gastropoda: Planorbidae). Acta Tropica 61, 1929.CrossRefGoogle Scholar
Tamura, K., Peterson, D., Peterson, N., Stecher, G., Nei, M. & Kumar, S. (2011) MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Molecular Biology and Evolution 28, 27312739.CrossRefGoogle ScholarPubMed
Tsai, M.H., Marx, K.A., Ismail, M.M. & Tao, L. (2000) Randomly amplified polymorphic DNA (RAPD) polymerase chain reaction assay for identification of Schistosoma mansoni strains sensitive or tolerant to anti-schistosomal drugs. Journal of Parasitology 86, 146149.CrossRefGoogle ScholarPubMed
Wakao, H., Kawamoto, H., Sakata, S., Inoue, K., Ogura, A., Wakao, R., Oda, A. & Fujita, H. (2007) A novel mouse model for invariant NKT cell study. Journal of Immunology 179, 38883895.CrossRefGoogle ScholarPubMed
Welsh, J., Petersen, C. & McClelland, M. (1991) Polymorphisms generated by arbitrarily primed PCR in the mouse: application to strain identification and genetic mapping. Nucleic Acids Research 19, 303306.CrossRefGoogle ScholarPubMed
World Health Organization (2003) Manual of basic techniques for health laboratory. 2nd edn.Geneva, WHO.Google Scholar
Ziegler, S.F. (2006) FOXP3: of mice and men. Annual Review of Immunology 24, 209226.CrossRefGoogle ScholarPubMed