Hostname: page-component-8448b6f56d-cfpbc Total loading time: 0 Render date: 2024-04-18T17:31:51.766Z Has data issue: false hasContentIssue false

Epizoozoan Trepostome Bryozoans on Nautiloids from the Upper Ordovician (Katian) of the Cincinnati Arch Region, U.S.A.: An Assessment of Growth, form, and Water Flow Dynamics

Published online by Cambridge University Press:  15 October 2015

Patrick N. Wyse Jackson
Affiliation:
Department of Geology, Trinity College, Dublin 2, Ireland,
Marcus M. Key Jr.
Affiliation:
Department of Earth Sciences, Dickinson College, P.O. Box 1773, Carlisle, Pennsylvania 17013-2896, U.S.A.,
Stephen P. Coakley
Affiliation:
Department of Geology, Trinity College, Dublin 2, Ireland,

Abstract

Spatiopora Ulrich, 1882 is a trepostome bryozoan that is found encrusting living orthoconic nautiloids in the Upper Ordovician (Katian) of North America, as do several other bryozoans. These epizoozoan bryozoans are characterized by possessing thin unilaminate zoaria with rows of elongate maculae, which may be monticulate and aligned coaxially to the host growth axis. These develop a distinctive linear shape in response to growing on a conical host, rather than as a response to channelized water flow along the host. Monticules increase in size and spacing adorally until a maximum inter-macular area is reached that results in a decline in surface water flow efficiency, and a new monticular line is inserted. Orthocones normally swam forward at lower velocities that enabled lophophore eversion and feeding, which would have been impossible at the higher speeds reached when the host jetted backwards during escape. Monticules reduced drag and turbulence acting on the orthocones which allowed for more efficient venting of bryozoan macular excurrents. Characteristic elliptical monticule growth continued even after death of the motile host. A Trypanites-bryozoan-orthoconic nautiloid association shows a complex biological and taphonomic relationship between these organisms.

Type
Research Article
Copyright
Copyright © The Paleontological Society 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Anstey, R. L. 1981. Zooid orientation structures and water flow patterns in Paleozoic bryozoan colonies. Lethaia, 14:287302.CrossRefGoogle Scholar
Apple, Mac. 2002–2009. Preview, Version 5.0.3.Google Scholar
Astrova, G. G. 1965. Morphologiya, istoriya razvitiya i sistema ordoviksikh i siluriyskikh mshanok. Trudy Paleontologicheskogo Instituta Adademiia Nauk SSSR [Transactions of the Paleontological Institute of the Academy of Science of the USSR], 106:1432.Google Scholar
Baird, G. C., Brett, C. E., and Frey, R. W. 1989. “Hitchhiking” epizoans on orthoconic cephalopods: Preliminary review of the evidence and its implications. Senckenbergiana lethaea, 69:439465.Google Scholar
Balazy, P. and Kuklinski, P. 2013. Mobile hard substrata—an additional biodiversity source in a high latitude shallow subtidal system. Estuarine, Coastal and Shelf Science, 119:153161.Google Scholar
Banta, W. C., McKinney, F. K., and Zimmer, R. L. 1974. Bryozoan monticules: Excurrent water outlets? Science, 185:783784.CrossRefGoogle ScholarPubMed
Barskov, I. S., Boiko, M. S., Konovalova, V. A., Leonova, T. B., and Nikolaeva, S. V. 2008 . Cephalopods in the marine ecosystems of the Paleozoic. Paleontological Journal, 42:11671284.CrossRefGoogle Scholar
Bassler, R. S. 1906. The bryozoan fauna of the Rochester Shale. United States Geological Survey Bulletin, 292:165.Google Scholar
Bassler, R. S. 1915. Bibliographic Index of American Ordovician and Silurian fossils, Part 2. United States National Museum Bulletin, 92:7191521.Google Scholar
Bassler, R. S. 1953. Bryozoa, p. 1253. In Moore, R. C. (ed.), Treatise on Invertebrate Paleontology. Part G. Geological Society of America and University of Kansas Press, Lawrence, Kansas.Google Scholar
Bergström, S. M., Chen, X., Gutiérrez-Marco, J. C., and Dronov, A. 2009. The new chronostratigraphic classification of the Ordovician System and its relations to major regional series and stages and to δ13C chemostratigraphy. Lethaia, 42:97107.Google Scholar
Bidder, A. 1962. Use of the tentacles, swimming and buoyancy control of the pearly Nautilus . Nature, 196:451454.Google Scholar
Boardman, R. S. and Buttler, C. J. 2005. Zooids and extrazooidal skeleton in the Order Trepostomata (Bryozoa). Journal of Paleontology, 79:10881104.Google Scholar
Caldwell, D. R. and Chriss, T. M. 1979. The viscous sublayer at the sea floor. Science, 205:11311132.Google Scholar
Checa, A. G., Okamoto, T., and Keupp, H. 2002. Abnormalities as natural experiments: a morphogenetic model for coiling regulation in planispiral ammonites. Paleobiology, 28:127138.2.0.CO;2>CrossRefGoogle Scholar
Cuffey, R. J. 1998. An introduction to the type-Cincinnatian, p. 29. In Davis, R. A. and Cuffey, R. J. (eds.), Sampling the Layer Cake That Isn't: The Stratigraphy and Paleontology of the Type-Cincinnatian. Ohio Department of Natural Resources, Division of Geological Survey Guidebook 13.Google Scholar
Dalvé, E. 1948. The Fossil Fauna of the Ordovician in the Cincinnati region. University Museum, Department of Geology and Geography, University of Cincinnati, Cincinnati, 56 p.Google Scholar
Davis, R. A., Mapes, R. H., and Klofak, S. M. 1999. Epizoa on Externally Shelled Cephalopods, p. 3251. In Yu. Rozanov, A. and Shevyrev, A. A. (eds.), Fossil Cephalopods: Recent Advances in Their Study. Russian Academy of Sciences Paleontological Institute, Moscow.Google Scholar
Ebel, K. 1999. Hydrostatics of fossil ectocochleate cephalopods and its significance for the reconstruction of their lifestyle. Paläontologische Zeitschrift, 73:277288.Google Scholar
Ekdale, A. A. and Bromley, R. G. 2001. Bioerosional innovation for living in carbonate hardgrounds in the Early Ordovician of Sweden. Lethaia, 34:112.Google Scholar
Erickson, J. M. and Bouchard, T. D. 2003. Description and interpretation of Sanctum laurentiensis, new ichnogenus and ichnospecies, a domichnium mined into Late Ordovician (Cincinnatian) ramose bryozoan colonies. Journal of Paleontology, 77:10021010.2.0.CO;2>CrossRefGoogle Scholar
Ferretti, A. and Kříž, J. 1995. Cephalopod limestone biofacies in the Silurian of the Prague Basin, Bohemia. Palaios, 10:240253.CrossRefGoogle Scholar
Fischer, A. G. and Teichert, C. 1969. Cameral deposits in cephalopod shells. University of Kansas Paleontological Contributions, 37:130.Google Scholar
Foord, A. H. 1883. Contributions to the micro-palaeontology of the Cambro–Silurian rocks of Canada. Geological and Natural History Survey of Canada, Ottawa, p. 126.Google Scholar
Frazier, J. G., Winston, J. E., and Ruckdeschel, C. A. 1992. Epizoan communities on marine turtles. Bulletin of Marine Science, 51:18.Google Scholar
Frey, R. C. 1988. Paleoecology of Treptoceras duseri from Late Ordovician of southwestern Ohio, p. 79101. In Wolberg, D. L. (ed.), Contributions to Paleozoic Paleontology and Stratigraphy in Honor of Rousseau H. Flower. New Mexico Bureau of Mines and Mineral Resources, Memoir 44.Google Scholar
Frey, R. C. 1989. Paleoecology of a well-preserved nautiloid assemblage from a Late Ordovician shale unit, southwestern Ohio. Journal of Paleontology, 63:604620.Google Scholar
Frey, R. C. 1995. Middle and Upper Ordovician nautiloid cephalopods of the Cincinnati arch region of Kentucky, Indiana, and Ohio. U.S. Geological Survey Professional Paper, 1066P:1126.Google Scholar
Hannibal, J. T. 1996. Ichnofossils, p. 506512. In Feldman, R. M. and Hackathorn, M. (eds.), Fossils of Ohio. Ohio Department of Natural Resources, Columbus.Google Scholar
Hansen, M. C. 1997. The geology of Ohio—the Ordovician. Ohio Geology, Fall 1997, 1:36.Google Scholar
Hauschke, N., Schöllmann, L., and Keupp, H. 2011. Oriented attachment of a stalked cirripede on an orthoconic heteromorph ammonite—implications for the swimming position of the latter. Neues Jahrbuch für Geologie und Paläontologie, 262:199212.Google Scholar
Hewitt, R. 1984. Growth analysis of Silurian orthoconic nautiloids. Palaeontology, 27:671677.Google Scholar
Histon, K. 2002. Telescoping in orthoconic nautiloids: An indication of high or low energy hydrodynamic regime? In Summesberger, H., Histon, K. and Daurer, A. (eds.), Cephalopods—Present and Past. Abhandlungen der Geologischen Bundesanstalt, 57:431442.Google Scholar
Holland, C. H. 1984. Form and function in Silurian Cephalopoda. Special Papers in Palaeontology, 32:151164.Google Scholar
International Commission on Stratigraphy. 2013. International Chronostratigraphic Chart, version 2013/1. www.stratigraphy.org/ICSchart/ChronostratChart2013-01.pdf [Accessed August 2013].Google Scholar
James, U. P. 1878. Descriptions of newly discovered species of fossils from the Lower Silurian Formations—Cincinnati Group. Paleontologist, 1:18.Google Scholar
James, U. P. 1884. Description of three species of fossils. Journal of the Cincinnati Society of Natural History, 7:2024.Google Scholar
Key, M. M. Jr. and Barnes, D. K. A. 1999. Bryozoan colonization of the marine isopod Glyptonotus antarcticus at Signy Island, Antarctica. Polar Biology, 21:4855.Google Scholar
Key, M. M. Jr., Jeffries, W. B., and Voris, H. K. 1995. Epizoic bryozoans, sea snakes, and other nektonic substrates. Bulletin of Marine Science, 56:462474.Google Scholar
Key, M. M. Jr., Jeffries, W. B., Voris, H. K., and Yang, C. M. 1996 a. Epizoic bryozoans and mobile ephemeral host substrata, p. 157165. In Gordon, D. P., Smith, A. M. and Grant-Mackie, J. A. (eds.), Bryozoans in Space and Time. National Institute of Water and Atmospheric Research, Wellington.Google Scholar
Key, M. M. Jr., Jeffries, W. B., Voris, H. K., and Yang, C. M. 1996 b. Epizoic bryozoans, horseshoe crabs, and other mobile benthic substrates. Bulletin of Marine Science, 58:368384.Google Scholar
Key, M. M. Jr., Jeffries, W. B., Voris, H. K., and Yang, C. M. 2000. Bryozoan fouling pattern on the horseshoe crab Tachypleus gigas (Müller) from Singapore, p. 265271. In Jackson, A. Herrera. Jackson, J. B. C. (eds.), Proceedings of the 11th International Bryozoology Association Conference. Smithsonian Tropical Research Institute, Balboa.Google Scholar
Key, M. M. Jr., Knauff, J. B., and Barnes, D. K. A. 2012. Epizoic Bryozoans on Predatory Pycnogonids from the South Orkney Islands, Antarctica: “If You Can't Beat Them, Join Them”, p. 137153. In Ernst, A., Schäfer, P. and Scholz, J. (eds.), Bryozoan Studies 2010. Springer, Heidelberg.Google Scholar
Key, M. M. Jr., Schumacher, G. A., Babcock, L. E., Frey, R. C., Heimbrock, W. P., Felton, S. H., Cooper, D. L., Gibson, W. B., Scheid, D. G., and Schumacher, S. A. 2010. Paleoecology of commensal epizoans fouling Flexicalymene (Trilobita) from the Upper Ordovician, Cincinnati Arch region, U.S.A. Journal of Paleontology, 84:11211134.Google Scholar
Key, M. M. Jr., Thrane, L., and Collins, J. A. 2002. Functional morphology of maculae in a giant ramose bryozoan from the Permian of Greenland, p. 163170. In Wyse Jackson, P. N., Buttler, C. J., and Spencer Jones, M. E. (eds.), Bryozoan Studies 2001. Balkema Publishers, Lisse.Google Scholar
Key, M. M. Jr., Winston, J. E., Volpe, W. J., Jeffries, W. B., and Voris, H. K. 1999. Bryozoan fouling of the blue crab, Callinectes sapidus, at Beaufort, North Carolina. Bulletin of Marine Science, 64:513533.Google Scholar
Key, M. M., Wyse Jackson, P. N., and Vitiello, L. J. 2011. Stream channel network analysis applied to colony-wide feeding structures in a Permian bryozoan from Greenland. Paleobiology, 37:287302.CrossRefGoogle Scholar
Kröger, B. 2007. Concentrations of juvenile and small adult cephalopods in the Hirnantian cherts (Late Ordovician) of Porkuni, Estonia. Acta Palaeontologica Polonica, 52:591608.Google Scholar
Kröger, B., Zhang, Y., and Isakar, M. 2009. Discosorids and Oncocerids (Cephalopoda) of the Middle Ordovician Kunda and Aseri Regional Stages of Baltoscandia and the early evolution of these groups. Geobios, 42:273292.CrossRefGoogle Scholar
Landman, N. H., Saunders, W. B., Winston, J. E., and Harries, P. J. 1987. Incidence and kinds of epizoans on the shells of live Nautilus , p. 163179. In Saunders, W. B. and Landman, N. H. (eds.), Nautilus: The Biology and Paleobiology of a Living Fossil. Plenum, New York.Google Scholar
Lidgard, S. 1981. Water flow, feeding, and colony form in an encrusting cheilostome, p. 135142. In Larwood, G. P. and Nielsen, C. (eds.), Recent and Fossil Bryozoa. Olsen and Olsen, Fredensborg.Google Scholar
Mägdefrau, K. 1932. Über einige Bohrgänge aus dem unteren Muschelkalk von Jena. Paläontologische Zeitschrift, 14:150160.Google Scholar
McKinney, F. K. 1986. Historical record of erect bryozoan growth forms. Proceedings of the Royal Society of London, Series B, 228:133148.Google Scholar
McKinney, F. K. 1990. Feeding and associated colonial morpholog in marine bryozoans. Reviews in Aquatic Sciences, 2:255280.Google Scholar
Meyer, D. L. and Davis, R. A. 2009. A sea without fish: Life in the Ordovician Sea of the Cincinnati region. Indiana University Press, Bloomington and Indianapolis.Google Scholar
Monks, N. 2010. The monster nautiluses of the Palaeozoic. Deposits Magazine, 22:2225.Google Scholar
Mutvei, H., Zhang, Y.-B., and Dunca, E. 2007. Late Cambrian plectronocerid nautiloids and their role in cephalopod evolution. Palaeontology, 50:13271333.Google Scholar
Oakley, K. P. 1938. Some Ordovician Bryozoa (Polyzoa) from Akpatok Island. Annals and Magazine of Natural History, Series 11, 2:206217.Google Scholar
Okamura, B. 1985. The effects of ambient flow velocity, colony size, and upstream colonies in the feeding success of Bryozoa. II. Conopeum reticulum (Linnaeus), and encrusting species. Journal of Experimental Marine Biology and Ecology, 89:6980.Google Scholar
Pachut, J. F. and Fisherkeller, P. 2010. Inferring larval type in fossil bryozoans. Lethaia, 43:396410.Google Scholar
Palmer, T. J. and Wilson, M. A. 2004. Calcite precipitation and dissolution of biogenic aragonite in shallow Ordovician calcite seas. Lethaia, 37:417427.CrossRefGoogle Scholar
Pratt, M. C. 2008. Living where the flow is right: How flow affects feeding in bryozoans. Integrative and Comparative Biology, 48:808822.CrossRefGoogle ScholarPubMed
Rakociński, M. 2011. Sclerobionts on upper Famennian cephalopods from the Holy Cross Mountains, Poland. Palaeobiodiversity and Palaeoenvironments, 91:6373.Google Scholar
Rasband, W. S. 1997–2012. ImageJ, U.S. National Institutes of Health, Bethesda, Maryland, U.S.A., http://imagej.nih.gov/ij/.Google Scholar
Ruedemann, R. 1925. The Utica and Lorraine formations of New York. Part 2. Systematic paleontology No. 1. Plants, sponges, corals, graptolites, crinoids, worms, bryozoans, brachiopods. New York State Museum Bulletin, 262:5171.Google Scholar
Saunders, W. B. 1984. Nautilus growth and longevity: Evidence from marked and recaptured animals. Science, 224 (4652):990992.Google Scholar
Schneider, C. L. 2003. Hitchhiking on Pennsylvanian echinoids: Epibionts on Archaeocidaris . Palaios, 18:435444.Google Scholar
Seilacher, A. 1960. Epizoans as a key to ammonoid ecology. Journal of Paleontology, 34:189193.Google Scholar
Tasch, P. 1955. Paleoecologic observations on the orthoceratid coquina beds of the Maquoketa at Graf, Iowa. Journal of Paleontology, 29:510518.Google Scholar
Taylor, P. D. 1979. The inference of extrazooidal feeding currents in fossil bryozoan colonies. Lethaia, 12:4756.Google Scholar
Taylor, P. D. 1990. Encrusters, p. 346351. In Briggs, D. E. G. and Crowther, P. R. (eds.), Palaeobiology: A Synthesis. Blackwell Scientific Publications, Oxford.Google Scholar
Taylor, P. D. and Wilson, M. A. 1994. Corynotrypa from the Ordovician of North America: Colony growth in a primitive stenolaemate bryozoan. Journal of Paleontology, 68:241257.Google Scholar
Taylor, P. D. and Wilson, M. A. 2002. A new terminology for marine organisms inhabiting hard substrates. Palaios, 17:522525.2.0.CO;2>CrossRefGoogle Scholar
Taylor, P. D. and Wilson, M. A. 2003. Palaeoecology and evolution of marine hard substrate communities. Earth Science Reviews, 62:1103.Google Scholar
Turek, V. and Manda, Š. 2012. “An endocochleate experiment” in the Silurian straight-shelled cephalopod Sphooceras . Bulletin of Geosciences, 87:767813.Google Scholar
Ulrich, E. O. 1879. Description of new genus and some new species of bryozoans from the Cincinnati Group. Journal of the Cincinnati Society of Natural History, 2:119131.Google Scholar
Ulrich, E. O. 1882. American Palaeozoic Bryozoa. Journal of the Cincinnati Society of Natural History, 5:121175.Google Scholar
Ulrich, E. O. 1883. American Palaeozoic Bryozoa. Journal of the Cincinnati Society of Natural History, 6:148168.Google Scholar
Ulrich, E. O. 1890. Palaeozoic Bryozoa. Illinois Geological Survey, 8:283688.Google Scholar
Ulrich, E. O. 1893. On Lower Silurian Bryozoa of Minnesota. Final Report of the Geological and Natural History Survey of Minnesota, 3:96332.Google Scholar
Utgaard, J. 1968. A revision of North American genera of ceramoporoid bryozoans (Ectoprocta): Part II; Crepipora, Ceramoporella, Acanthoceramoporella, and Ceramophylla . Journal of Paleontology, 42:14441455.Google Scholar
Utgaard, J. 1983. Systematic descriptions for the Order Cystoporata, p. 327439. In Robison, R. A. (ed.), Treatise on Invertebrate Paleontology. Part G. Bryozoa, revised. Volume 1. Geological Society of America and University of Kansas Press, Lawrence, Kansas.Google Scholar
Wahl, M. 1996. Fouled snails in flow: Potential of epibionts on Littorina littorea to increase drag and reduce snail growth rates. Marine Ecology Progress Series, 138:157168.Google Scholar
Ward, P., Stone, R., Westermann, G., and Martin, A. 1977. Notes on animal weight, cameral fluids, swimming speed, and color polymorphism of cephalopod Nautilus pompilius in Fiji Islands. Paleobiology, 3:377388.Google Scholar
Wilson, M. A. and Taylor, P. D. 2012. Palaeoecology, preservation and taxonomy of encrusting ctenostome bryozoans inhabiting ammonite body chambers in the Late Cretaceous Pierre Shale of Wyoming and South Dakota, U.S.A., p. 419433. In Ernst, A., Schäfer, P. and Scholz, J. (eds.), Bryozoan Studies 2010. Springer, Heidelberg.Google Scholar
Wilson, M. A., Palmer, T. J., Guensburg, T. E., Finton, C. D., and Kaufman, L. E. 1992. The development of an Early Ordovician hardground community in response to rapid sea-floor calcite precipitation. Lethaia, 25:1934.Google Scholar
Wilson, M. A., Palmer, T. J., and Taylor, P. D. 1994. Earliest preservation of soft-bodied fossils by epibiont bioimmuration: Upper Ordovician of Kentucky. Lethaia, 27:269270.CrossRefGoogle Scholar
Wyse Jackson, P. N. and Key, M. M. Jr. 2007. Borings in trepostome bryozoans from the Ordovician of Estonia: Two ichnogenera produced by a single maker, a case of host morphology. Lethaia, 40:237252.Google Scholar
Wyse Jackson, P. N. and Key, M. M. Jr. 2014. Epizoic bryozoans on cephalopods through the Phanerozoic: A review. In Rosso, A., Wyse Jackson, P. N., and Porter, J. S. (eds.). Bryozoan Studies 2013. Studi Trentini di Scienze Naturali, 94:283291.Google Scholar
Wyse Jackson, P. N., Bancroft, A. J., and Somerville, I. S. 1991. Bryozoan zonation in a trepostome-dominated buildup from the Lower Carboniferous of North Wales. In Bigey, F. P. (ed.), Bryozoaires Actuels et Fossiles: Bryozoa Living and Fossil. Bulletin de la Societe Sciences Naturelles de la Ouest de France, Mémoire H.S., 1:551559.Google Scholar
Wyse Jackson, P. N., Taylor, P. D., and Tilsley, J. W. 1999. The ‘Balladoole Coral’ from the Lower Carboniferous of the British Isles, reinterpreted as the unusual cystoporate bryozoan Meekoporella Moore and Dudley, 1944. Proceedings of the Yorkshire Geological Society, 52:257268.CrossRefGoogle Scholar