Hostname: page-component-8448b6f56d-tj2md Total loading time: 0 Render date: 2024-04-19T21:37:10.870Z Has data issue: false hasContentIssue false

Effects of alkyl chain positioning on conjugated polymer microstructure and field-effect mobilities

Published online by Cambridge University Press:  02 July 2015

Bob C. Schroeder*
Affiliation:
Department of Chemistry and Centre for Plastic Electronics, Imperial College London, London SW7 2AZ, UK
Christian B. Nielsen
Affiliation:
Department of Chemistry and Centre for Plastic Electronics, Imperial College London, London SW7 2AZ, UK
Paul Westacott
Affiliation:
Department of Materials and Centre for Plastic Electronics, Imperial College London, London SW7 2AZ, UK
Jeremy Smith
Affiliation:
Department of Physics and Centre for Plastic Electronics, Imperial College London, London SW7 2AZ, UK
Stephan Rossbauer
Affiliation:
Department of Physics and Centre for Plastic Electronics, Imperial College London, London SW7 2AZ, UK
Thomas D. Anthopoulos
Affiliation:
Department of Physics and Centre for Plastic Electronics, Imperial College London, London SW7 2AZ, UK
Natalie Stingelin
Affiliation:
Department of Materials and Centre for Plastic Electronics, Imperial College London, London SW7 2AZ, UK
Iain McCulloch
Affiliation:
Department of Chemistry and Centre for Plastic Electronics, Imperial College London, London SW7 2AZ, UK Physical Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
*
Address all correspondence to Bob C. Schroeder atbschroeder@stanford.edu
Get access

Abstract

Solubilizing alkyl chains play a crucial role in the design of semiconducting polymers because they define the materials solubility and processability as well as both the crystallinity and solid-state microstructure. In this paper, we present a scarcely explored design approach by attaching the alkyl side chains on one side (cis-) or on both sides (trans-) of the conjugated backbone. We further investigate the effects of this structural modification on the solid-state properties of the polymers and on the charge-carrier mobilities in organic thin-film transistors.

Type
Polymers/Soft Matter Research Letters
Copyright
Copyright © Materials Research Society 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Sirringhaus, H.: Organic field-effect transistors: the path beyond amorphous silicon. Adv. Mater. 26, 1319 (2014).Google Scholar
2.Wu, W., Liu, Y., and Zhu, D.: π-conjugated molecules with fused rings for organic field-effect transistors: design, synthesis and applications. Chem. Soc. Rev. 39, 1489 (2010).CrossRefGoogle ScholarPubMed
3.Nielsen, C.B. and McCulloch, I.: Recent advances in transistor performance of polythiophenes. Progr. Polym. Sci. 38, 2053 (2013).CrossRefGoogle Scholar
4.Holliday, S., Donaghey, J.E., and McCulloch, I.: Advances in charge carrier mobilities of semiconducting polymers used in organic transistors. Chem. Mater. 26, 647 (2014).Google Scholar
5.Zhang, X., Bronstein, H., Kronemeijer, A.J., Smith, J., Kim, Y., Kline, R.J., Richter, L.J., Anthopoulos, T.D., Sirringhaus, H., Song, K., Heeney, M., Zhang, W., McCulloch, I., and DeLongchamp, D.M.: Molecular origin of high field-effect mobility in an indacenodithiophene-benzothiadiazole copolymer. Nat. Commun. 4, 3238 (2013).Google Scholar
6.Venkateshvaran, D., Nikolka, M., Sadhanala, A., Lemaur, V., Zelazny, M., Kepa, M., Hurhangee, M., Kronemeijer, A.J., Pecunia, V., Nasrallah, I., Romanov, I., Broch, K., McCulloch, I., Emin, D., Olivier, Y., Cornil, J., Beljonne, D., and Sirringhaus, H.: Approaching disorder-free transport in high-mobility conjugated polymers. Nature 515, 384 (2014).Google Scholar
7.Mei, J. and Bao, Z.: Side chain engineering in solution-processable conjugated polymers. Chem. Mater. 26, 604 (2014).Google Scholar
8.Lei, T., Wang, J.-Y., and Pei, J.: Roles of flexible chains in organic semiconducting materials. Chem. Mater. 26, 594 (2014).Google Scholar
9.Bronstein, H., Leem, D.S., Hamilton, R., Woebkenberg, P., King, S., Zhang, W., Ashraf, R.S., Heeney, M., Anthopoulos, T.D., de Mello, J., and McCulloch, I.: Indacenodithiophene-co-benzothiadiazole copolymers for high performance solar cells or transistors via alkyl chain optimization. Macromolecules 44, 6649 (2011).CrossRefGoogle Scholar
10.Ong, B.S., Wu, Y., Liu, P., and Gardner, S.: High-performance semiconducting polythiophenes for organic thin-film transistors. J. Am. Chem. Soc. 126, 3378 (2004).Google Scholar
11.McCulloch, I., Heeney, M., Bailey, C., Genevicius, K., MacDonald, I., Shkunov, M., Sparrowe, D., Tierney, S., Wagner, R., Zhang, W., Chabinyc, M.L., Kline, R.J., McGehee, M.D., and Toney, M.F.: Liquid-crystalline semiconducting polymers with high charge-carrier mobility. Nat. Mater. 5, 328 (2006).Google Scholar
12.Biniek, L., Schroeder, B.C., Donaghey, J.E., Yaacobi-Gross, N., Ashraf, R.S., Soon, Y.W., Nielsen, C.B., Durrant, J.R., Anthopoulos, T.D., and McCulloch, I.: New fused bis-thienobenzothienothiophene copolymers and their use in organic solar cells and transistors. Macromolecules 46, 727 (2013).Google Scholar
13.Fei, Z., Pattanasattayavong, P., Han, Y., Schroeder, B.C., Yan, F., Kline, R.J., Anthopoulos, T.D., and Heeney, M.: Influence of side-chain regiochemistry on the transistor performance of high-mobility, all-donor polymers. J. Am. Chem. Soc. 136, 15154 (2014).Google Scholar
14.Kline, R.J., DeLongchamp, D.M., Fischer, D.A., Lin, E.K., Richter, L.J., Chabinyc, M.L., Toney, M.F., Heeney, M., and McCulloch, I.: Critical role of side-chain attachment density on the order and device performance of polythiophenes. Macromolecules 40, 7960 (2007).Google Scholar
15.Zhang, L., Colella, N.S., Liu, F., Trahan, S., Baral, J.K., Winter, H.H., Mannsfeld, S.C.B., and Briseno, A.L.: Synthesis, electronic structure, molecular packing/morphology evolution, and carrier mobilities of pure oligo-/poly(alkylthiophenes). J. Am. Chem. Soc. 135, 844 (2013).CrossRefGoogle ScholarPubMed
16.McCulloch, I., Ashraf, R.S., Biniek, L., Bronstein, H., Combe, C., Donaghey, J.E., James, D.I., Nielsen, C.B., Schroeder, B.C., and Zhang, W.: Design of semiconducting indacenodithiophene polymers for high performance transistors and solar cells. Acc. Chem. Res. 45, 714 (2012).CrossRefGoogle ScholarPubMed
17.Tsao, H.N., Cho, D.M., Park, I., Hansen, M.R., Mavrinskiy, A., Yoon, D.Y., Graf, R., Pisula, W., Spiess, H.W., and Müllen, K.: Ultrahigh mobility in polymer field-effect transistors by design. J. Am. Chem. Soc. 133, 2605 (2011).Google Scholar
18.Lei, T., Dou, J.-H. and Pei, J.: Influence of alkyl chain branching positions on the hole mobilities of polymer thin-film transistors. Adv. Mater. 24, 6457 (2012).Google Scholar
19.Mei, J., Kim, D.H., Ayzner, A., Toney, M.F., and Bao, Z.: Siloxane-terminated solubilizing side chains: bringing conjugated polymer backbones closer and boosting hole mobilities in thin-film transistors. J. Am. Chem. Soc. 133, 20130 (2011).Google Scholar
20.Meager, I., Ashraf, R.S., Mollinger, S., Schroeder, B.C., Bronstein, H., Beatrup, D., Vezie, M.S., Kirchartz, T., Salleo, A., Nelson, J., and McCulloch, I.: Photocurrent enhancement from diketopyrrolopyrrole polymer solar cells through alkyl-chain branching point manipulation. J. Am. Chem. Soc. 135, 11537 (2013).Google Scholar
21.Himmelberger, S., Duong, D.T., Northrup, J.E., Rivnay, J., Koch, F.P.V., Beckingham, B.S., Stingelin, N., Segalman, R.A., Mannsfeld, S.C.B., and Salleo, A.: Role of side-chain branching on thin-film structure and electronic properties of polythiophenes. Adv. Funct. Mater. (2015). doi:10.1002/adfm.201500101.Google Scholar
22.Schroeder, B.C., Ashraf, R.S., Thomas, S., White, A.J.P., Biniek, L., Nielsen, C.B., Zhang, W., Huang, Z., Tuladhar, P.S., Watkins, S.E., Anthopoulos, T.D., Durrant, J.R., and McCulloch, I.: Synthesis of novel thieno[3,2-b]thienobis(silolothiophene) based low bandgap polymers for organic photovoltaics. Chem. Commun. 48, 7699 (2012).CrossRefGoogle ScholarPubMed
23.Schroeder, B.C., Kirkus, M., Nielsen, C.B., Ashraf, R.S., and McCulloch, I.: Dithienosilolothiophene, a new polyfused donor for organic electronics, submitted (2015).Google Scholar
24.Schroeder, B.C., Huang, Z., Ashraf, R.S., Smith, J., D'Angelo, P., Watkins, S.E., Anthopoulos, T.D., Durrant, J.R., and McCulloch, I.: Silaindacenodithiophene-based low band gap polymers—the effect of fluorine substitution on device performances and film morphologies. Adv. Funct. Mater. 22, 1663 (2012).Google Scholar