Hostname: page-component-7c8c6479df-24hb2 Total loading time: 0 Render date: 2024-03-29T04:33:21.977Z Has data issue: false hasContentIssue false

Microscopy Characterization of Silica-Rich Agrowastes to be used in Cement Binders: Bamboo and Sugarcane Leaves

Published online by Cambridge University Press:  07 September 2015

Josefa Roselló
Affiliation:
Departamento de Ecosistemas Agroforestales, Universitat Politècnica de Valéncia, E-46022 Spain
Lourdes Soriano
Affiliation:
Instituto de Ciencia y Tecnología del Hormigón ICITECH, Universitat Politècnica de Valéncia, E-46022 Spain
M. Pilar Santamarina
Affiliation:
Departamento de Ecosistemas Agroforestales, Universitat Politècnica de Valéncia, E-46022 Spain
Jorge L. Akasaki
Affiliation:
UNESP - Univ Estadual Paulista, Departamento de Engenharia Civil, Campus de Ilha Solteira, SP CEP 15385-000, Brasil
José Luiz P. Melges
Affiliation:
UNESP - Univ Estadual Paulista, Departamento de Engenharia Civil, Campus de Ilha Solteira, SP CEP 15385-000, Brasil
Jordi Payá*
Affiliation:
Instituto de Ciencia y Tecnología del Hormigón ICITECH, Universitat Politècnica de Valéncia, E-46022 Spain
*
*Corresponding author. jjpaya@cst.upv.es
Get access

Abstract

Agrowastes are produced worldwide in huge quantities and they contain interesting elements for producing inorganic cementing binders, especially silicon. Conversion of agrowastes into ash is an interesting way of yielding raw material used in the manufacture of low-CO2 binders. Silica-rich ashes are preferred for preparing inorganic binders. Sugarcane leaves (Saccharum officinarum, SL) and bamboo leaves (Bambusa vulgaris, BvL and Bambusa gigantea, BgL), and their corresponding ashes (SLA, BvLA, and BgLA), were chosen as case studies. These samples were analyzed by means of optical microscopy, Cryo-scanning electron microscopy (SEM), SEM, and field emission scanning electron microscopy. Spodograms were obtained for BvLA and BgLA, which have high proportions of silicon, but no spodogram was obtained for SLA because of the low silicon content. Different types of phytoliths (specific cells, reservoirs of silica in plants) in the studied leaves were observed. These phytoliths maintained their form after calcination at temperatures in the 350–850°C range. Owing to the chemical composition of these ashes, they are of interest for use in cements and concrete because of their possible pozzolanic reactivity. However, the presence of significant amounts of K and Cl in the prepared ashes implies a limitation of their applications.

Type
Biological Applications
Copyright
© Microscopy Society of America 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aprianti, E., Shafigh, P., Bahri, S. & Farahani, J.N. (2015). Supplementary cementitious materials origin from agricultural wastes – A review. Constr Build Mater 74, 176187.Google Scholar
Arumugam, A. & Ponnusami, V. (2012). Modified SBA-15 synthesized using sugarcane leaf ash for nickel adsorption. Indian J Chem Technol 20, 101105.Google Scholar
Asha, P., Salman, A. & Kumar, R.A. (2014). Experimental study on concrete with bamboo leaf ash. Int J Eng Adv Technol 3, 4651.Google Scholar
Diamond, S. (1975). A review of alkali-silica reaction and expansion mechanisms 1. Alkalis in cements and in concrete pore solutions. Cem Concr Res 5, 329345.Google Scholar
Diamond, S. (1976). A review of alkali-silica reaction and expansion mechanisms 2. Reactive aggregates. Cem Concr Res 6, 549560.CrossRefGoogle Scholar
Dwivedi, V.N., Singh, N.P., Das, S.S. & Singh, N.B. (2006). A new pozzolanic material for cement industry: Bamboo leaf ash. Int J Phys Sci 1, 106111.Google Scholar
Epstein, E. (1999). Silicon. Annu Rev Plant Physiol Plant Mol Biol 50, 641664.CrossRefGoogle ScholarPubMed
Erra, G., Zucol, A.F. & Kröhling, D.M. (2011). Phytolitic analysis of the Tezanos Pinto Formation (Late Pleistocene–early Holocene) in the northwestern sector of its distribution area, Provincia de Entre Ríos (Argentina). Rev Mex Cienc Geol 28, 398412.Google Scholar
Frías, M., Savastano, H., Villar, E., Sánchez De Rojas, M.I. & Santos, S. (2012). Characterization and properties of blended cement matrices containing activated bamboo leaf wastes. Cem Concr Comp 34, 10191023.Google Scholar
Frías, M., Villar-Cociña, E. & Valencia-Morales, E. (2007). Characterisation of sugar cane straw waste as pozzolanic material for construction: Calcining temperature and kinetic parameters. Waste Manag 27, 533538.Google Scholar
Gallego, L. & Distel, R.A. (2004). Phytolith assemblages in grasses native to central Argentina. Ann Bot 94, 865874.CrossRefGoogle ScholarPubMed
Guzmán, A., Gutiérrez, C., Amigó, V., De Gutiérrez, R.M. & Delvasto, S. (2011). Pozzolanic evaluation of the sugar cane leaf. Mater Constr 61, 213225.Google Scholar
Hosseini, M.M., Shao, Y. & Whalen, J.K. (2011). Biocement production from silicon-rich plant residues: Perspectives and future potential in Canada. Biosyst Eng 110, 351362.CrossRefGoogle Scholar
Iorliam, A.Y., Agbede, I.O. & Joel, M. (2012). Effect of bamboo leaf ash on cement stabilization of Makurdi shale for use as flexible pavement construction material. Am J Sci Ind Res 3, 166174.Google Scholar
Kamenik, J., Mizera, J. & Randa, Z. (2013). Chemical composition of plant silica phytoliths. Environ Chem Lett 11, 189195.CrossRefGoogle Scholar
Le Blond, J.S., Horwell, C.J., Williamson, B.J. & Oppenheimer, C. (2010). Generation of crystalline silica from sugarcane burning. J Environ Monit 12, 14591470.Google Scholar
Le Blond, J.S., Williamson, B.J., Horwell, C.J., Monro, A.K., Kirk, C.A. & Oppenheimer, C. (2008). Production of potentially hazardous respirable silica airborne particulate from the burning of sugarcane. Atmos Environ 42, 55585568.CrossRefGoogle Scholar
Li, B., Song, Z., Wang, H., Li, Z., Jiang, P. & Zhou, G. (2014). Lithological control on phytolith carbon sequestration in mosobamboo forests. Sci Rep 4, 5262, 5pp.Google Scholar
Ma, J.F. & Yamaji, N. (2006). Silicon uptake and accumulation in higher plants. Trends Plant Sci 11, 392397.CrossRefGoogle ScholarPubMed
Mehta, P.K. (1989). Pozzolanic and Cementitious By-Products in Concrete: Another Look (ACI Special Publication). Farmington Hills, MI, USA: American Concrete Institute. pp. 1–44.Google Scholar
Mohapatra, S., Sakthivel, R., Roy, G.S., Varmac, S., Singh, S.K. & Mishra, D.K. (2011). Synthesis of β-SiC powder from bamboo leaf in a DC extended thermal plasma reactor. Mater Manuf Processes 26, 13621368.CrossRefGoogle Scholar
Motomura, H., Fujii, T. & Suzumi, M. (2006). Silica deposition in abaxial epidermis before the opening of leaf blades of Pleioblastus chino (Poaceae, Bambusoideae). Ann Bot 97, 513519.Google Scholar
Neethirajan, S., Gordon, R. & Wang, L. (2009). Potential of silica bodies (phytoliths) for nanotechnology. Trends Biotechnol 27, 461467.Google Scholar
Nzihou, A. (2010). Toward the valorization of waste and biomass. Waste Biomass Valoriz 1, 37.CrossRefGoogle Scholar
Payá, J., Monzó, J. & Borrachero, M.V. (2010). Outstanding aspects on the use of rice husk ash and similar agrowastes in the preparation of binders. In Proceedings of the First Pro-Africa Conference: Non Conventional Building Materials Based on Agroindustrial Wastes, Savastano Jr. H. (Ed.), pp. 179181). São Paulo, Brazil: Pirassununga.Google Scholar
Prat, H. (1936). La Systematique des Graminées. Ann Sci Nat 18, 165258.Google Scholar
Prychid, C.J., Rudall, P.J. & Gregory, M. (2003). Systematics and biology of silica bodies in monocotyledons. Bot Rev 69, 377440.Google Scholar
Rodrigues, M.S., Beraldo, A.L., Savastano, J.R.H. & Santos, S.F. (2013). Sugarcane straw ash as mineral addition in fibercement. Rev Bras Eng Agric Amb 17, 13471354.Google Scholar
Santos, S.F., Tonoli, G.H.D., Mejia, J.E.B., Fiorelli, J. & Savastano, H. Jr. (2015). Non-conventional cement-based composites reinforced with vegetable fibers: A review of strategies to improve durability. Mater Constr 65, e041.Google Scholar
Singh, N.B., Das, S.S., Singh, N.P. & Dwivedi, V.N. (2009). Studies on SCLA composite Portland cement. Indian J Eng Mater Sci 16, 415422.Google Scholar
Singh, N.B., Dasa, S.S., Singh, N.P. & Dwivedi, V.N. (2007). Hydration of bamboo leaf ash blended Portland cement. Indian J Eng Mater Sci 14, 6976.Google Scholar
Teixeira, S.R., Souza, A.E., Carvalho, C.L., Reynoso, V.C.S., Romero, M. & Rincón, J.M. (2014). Characterization of a wollastonite glass-ceramic material prepared using sugar cane bagasse ash (SCBA) as one of the raw materials. Mater Charact 98, 209214.Google Scholar
Tuck, O.C., Pérez, E., Horváth, I.T., Sheldon, R.A. & Poliakoff, M. (2012). Valorization of biomass: Deriving more value from waste. Science 237, 695699.Google Scholar
Villar-Cociña, E., Morales, E.V., Santos, S.F., Savastano, H. Jr. & Frías, M. (2011). Pozzolanic behavior of bamboo leaf ash: Characterization and determination of the kinetic parameters. Cem Concr Comp 33, 6873.Google Scholar