Hostname: page-component-8448b6f56d-c4f8m Total loading time: 0 Render date: 2024-04-20T08:30:45.479Z Has data issue: false hasContentIssue false

Numerous Iron-Rich Particles Lie on the Surface of Erionite Fibers from Rome (Oregon, USA) and Karlik (Cappadocia, Turkey)

Published online by Cambridge University Press:  19 August 2015

Alessandro Croce
Affiliation:
Department of Science and Technological Innovation, Università del Piemonte Orientale “Amedeo Avogadro”, Viale Teresa Michel 11, 15121 Alessandria, Italy
Mario Allegrina
Affiliation:
Department of Science and Technological Innovation, Università del Piemonte Orientale “Amedeo Avogadro”, Viale Teresa Michel 11, 15121 Alessandria, Italy
Caterina Rinaudo*
Affiliation:
Department of Science and Technological Innovation, Università del Piemonte Orientale “Amedeo Avogadro”, Viale Teresa Michel 11, 15121 Alessandria, Italy
Giovanni Gaudino
Affiliation:
University of Hawai’i Cancer Center, University of Hawai’i, 96813 Honolulu, HI, USA
Haining Yang
Affiliation:
University of Hawai’i Cancer Center, University of Hawai’i, 96813 Honolulu, HI, USA
Michele Carbone
Affiliation:
University of Hawai’i Cancer Center, University of Hawai’i, 96813 Honolulu, HI, USA
*
*Corresponding author. caterina.rinaudo@uniupo.it
Get access

Abstract

Erionite samples from Rome, Oregon (USA) and Karlik, Cappadocia (Turkey) were analyzed by environmental scanning electron microscopy (E-SEM) coupled with energy-dispersive spectroscopy (EDS) to verify the chemical composition of this mineral phase, and the presence of iron in particular. By means of backscattered electron images, a large number of particles/grains were observed on the surface of the erionite fibers from both locations. The particles were found to be micrometric on samples from Rome and submicrometric on samples from Karlik, and always lighter than the hosting crystal in appearance. In different areas of the same fiber or bundle of fibers, several EDS spectra were recorded. Iron was detected only when a light particle was lying in the path of the electron beam. Iron was never identified in the EDS spectra acquired on the flat erionite surface. The results from E-SEM/EDS were confirmed by micro-Raman spectroscopy, showing bands ascribing to hematite—Fe2O3, goethite—FeO(OH), or jarosite—KFe33+(SO4)2(OH)6 when the laser beam was addressed on the light particles observed on the fiber surface. The evidence that iron is on the surface of erionite fibers, rather than being part of the crystalline structure, may be relevant for the carcinogenic potential of these fibers.

Type
Materials Applications
Copyright
© Microscopy Society of America 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ballirano, P., Andreozzi, G.B., Dogan, M. & Dogan, A.U. (2009). Crystal structure and iron topochemistry of erionite-K from Rome, Oregon, U.S.A. Am Mineral 94, 12621270.CrossRefGoogle Scholar
Baumann, F., Ambrosi, J.P. & Carbone, M. (2013). Asbestos is not just asbestos: An unrecognised health hazard. Lancet Oncol 14(7), 576578.CrossRefGoogle Scholar
Bernstein, D., Castranova, V., Donaldson, K., Fubini, B., Hadley, J., Hesterberg, T., Kane, A., Lai, D., McConnell, E.E., Muhle, H., Oberdorster, G., Olin, S. & Warheit, D.B. (2005). Testing of fibrous particles: Short-term assays and strategies. Report of an ILSI Risk Science Institute Working Group. Inhal Toxicol 17, 497537.CrossRefGoogle Scholar
Bertino, P., Marconi, A., Palumbo, L., Bruni, B., Barbone, D., Germano, S., Dogan, A.U., Tassi, G., Porta, C., Mutti, L. & Gaudino, G. (2007). Erionite and asbestos differently cause transformation of human mesothelial cells. Int J Cancer 121, 1220.CrossRefGoogle ScholarPubMed
Bouchard, M. & Smith, D.C. (2003). Catalogue of 45 reference Raman spectra of minerals concerning research in art history or archaeology, especially on corroded metals and coloured glass. Spectrochim Acta A Mol Biomol Spectrosc 59, 22472266.CrossRefGoogle ScholarPubMed
Cametti, G., Pacella, A., Mura, F., Rossi, M. & Ballirano, P. (2013). New morphological, chemical, and structural data of woolly erionite-Na from Durkee, Oregon, U.S.A. Am Mineral 98, 21552163.CrossRefGoogle Scholar
Carbone, M., Baris, Y.I., Bertino, P., Brass, B., Comertpay, S., Dogan, A.U., Gaudino, G., Jube, S., Kanodia, S., Partridge, C.R., Pass, H.I., Rivera, Z.S., Steele, I., Tuncer, M., Way, S., Yang, H. & Miller, A. (2011). Erionite exposure in North Dakota and Turkish villages with mesothelioma. Proc Natl Acad Sci USA 108, 1361813623.CrossRefGoogle ScholarPubMed
Carbone, M., Emri, S., Dogan, A.U., Steele, I., Tuncer, M., Pass, H.I. & Baris, Y.I. (2007). A mesothelioma epidemic in Cappadocia: Scientific developments and unexpected social outcomes. Nat Rev Cancer 7(2), 147154.CrossRefGoogle ScholarPubMed
Carbone, M., Ly, B.H., Dodson, R.F., Pagano, I., Morris, P.T., Dogan, U.A., Gazdar, A.F., Pass, H.I. & Yang, H. (2012). Malignant mesothelioma: Facts, myths, and hypotheses. J Cell Physiol 227(1), 4458.CrossRefGoogle ScholarPubMed
Chio, C.H., Sharma, S.K. & Muenow, D.W. (2005). Micro-Raman studies of hydrous ferrous sulfates and jarosites. Spectrochim Acta A Mol Biomol Spectrosc 61, 24282433.CrossRefGoogle ScholarPubMed
Croce, A., Musa, M., Allegrina, M., Rinaudo, C., Baris, Y.I., Dogan, A.U., Powers, A., Rivera, Z., Bertino, P., Yang, H., Gaudino, G. & Carbone, M. (2013). Micro-Raman spectroscopy identifies crocidolite and erionite fibers in tissue sections. J Raman Spectrosc 44, 14401445.CrossRefGoogle Scholar
Dogan, A.U., Baris, Y.I., Dogan, M., Emri, S., Steele, I., Elmishad, A.G. & Carbone, M. (2006). Genetic predisposition to fiber carcinogenesis causes a mesothelioma epidemic in Turkey. Cancer Res 66(10), 50635068.CrossRefGoogle ScholarPubMed
Dogan, A.U. & Dogan, M. (2008). Re-evaluation and re-classification of erionite series minerals. Environ Geochem Health 30(4), 355366.CrossRefGoogle ScholarPubMed
Dogan, A.U., Dogan, M. & Hoskins, J.A. (2008). Erionite series minerals: Mineralogical and carcinogenic properties. Environ Geochem Health 30(4), 367381.CrossRefGoogle ScholarPubMed
Dogan, A.U., Dogan, M. & Hoskins, J.A. (2011). Erionite and its health effects. In Encylopedia of Environmental Health (vol. 2 Nriagu, J.O. (Ed.), pp. 590593). Burlington, VT: Elsevier.CrossRefGoogle Scholar
Dogan, M. (2011). Quantitative characterization of the mesothelioma-inducing erionite series minerals by transmission electron microscopy and energy dispersive spectroscopy. Scanning 33, 16.Google Scholar
Eberly, P.E. Jr. (1964). Adsorption properties of naturally occurring erionite and its cationic-exchanged forms. Am Mineral 49, 3040.Google Scholar
Foresti, E., Fornero, E., Lesci, I.G., Rinaudo, C., Zuccheri, T. & Roveri, N. (2009). Asbestos health hazard: A spectroscopic study of synthetic geoinspired Fe-doped chrysotile. J Hazard Mater 167(1–3), 10701079.CrossRefGoogle Scholar
Fornero, E., Allegrina, M., Rinaudo, C., Mazziotti-Tagliani, S. & Gianfagna, A. (2008). Micro-Raman spectroscopy applied on oriented crystals of fluoro-edenite amphibole. Period Mineral 77, 514.Google Scholar
Frost, R.L., Wills, R.A., Weier, M.L., Martens, W. & Mills, S. (2006). A Raman spectroscopic study of selected natural jarosites. Spectrochim Acta A Mol Biomol Spectrosc 63, 18.CrossRefGoogle ScholarPubMed
Fubini, B. & Mollo, L. (1995). Role of iron in the reactivity of mineral fibers. Toxicol Lett 82/83, 951960.CrossRefGoogle ScholarPubMed
Gazzano, E., Turci, F., Foresti, E., Putzu, M.G., Alderi, E., Silvagno, F., Lesci, I.G., Tomasi, M., Riganti, C., Romero, C., Fubini, B., Roveri, N. & Ghigo, D. (2005). Different cellular responses evoked by natural and stoichiometric synthetic chrysotile asbestos. Toxicol Appl Pharmacol 206, 356364.CrossRefGoogle ScholarPubMed
Ghio, A.J., Churg, A. & Roggli, V.L. (2004). Ferruginous bodies: Implications in the mechanism of fiber and particle toxicology. Toxicol Pathol 32, 643649.CrossRefGoogle Scholar
Giacobbe, C., Gualtieri, A.F., Quartieri, S., Rinaudo, C., Allegrina, M. & Andeozzi, G.B. (2010). Spectroscopic study of the product of thermal transformation of chrysotile-asbestos containing materials (ACM). Eur J Mineral 22/4, 533546.Google Scholar
Gualtieri, A.F., Artioli, G., Passaglia, E., Bigi, S., Viani, A. & Hanson, J.C. (1998). Crystal structure crystal chemistry relationships in the zeolites erionite and offretite. Am Mineral 83(5–6), 590606.CrossRefGoogle Scholar
Guthrie, G.D. (1992). Biological effects of inhaled minerals. Am Mineral 77, 225243.Google Scholar
Hanesch, M. (2009). Raman spectroscopy of iron oxides and (oxy)hydroxides at low laser power and possible applications in environmental magnetic studies. Geophys J Int 177, 941948.CrossRefGoogle Scholar
Ilgren, E.B., Ortega Breña, M., Castro Larragoitia, J., Loustaunau Navarrete, G., Fuentes Breña, A., Krauss, E. & Fehér, G. (2008 a). A reconnaissance study of a potential emerging Mexican mesothelioma epidemic due to fibrous zeolite exposure. Indoor Built Environ 17, 496515.CrossRefGoogle Scholar
Ilgren, E.B., Pooley, F.D., Castro Larragoitia, J., Talamantes, M., Loustaunau Navarrete, G., Krauss, E. & Fuentes Breña, A. (2008 b). First confirmed erionite related mesothelioma in North America. Indoor Built Environ 17, 567568.CrossRefGoogle Scholar
Jaurand, M.C., Fleury, J., Monchaux, G., Nebut, M. & Bignon, J. (1987). Pleural carcinogenic potency of mineral fibers (asbestos, attapulgite) and their cytotoxicity on cultured cells. J Natl Cancer Inst 79(4), 797804.Google ScholarPubMed
Kelsey, K.T., Yano, E., Liber, H.L. & Little, J.B. (1986). The in vitro genetic effects of fibrous erionite and crocidolite asbestos. Br J Cancer 54, 107114.CrossRefGoogle ScholarPubMed
Kliment, C.R., Clemens, K. & Oury, T.D. (2009). North American erionite-associated mesothelioma with pleural plaques and pulmonary fibrosis: A case report. Int J Clin Exp Pathol 2, 407410.Google ScholarPubMed
Legodi, M.A. & de Waal, D. (2007). The preparation of magnetite, goethite, hematite and maghemite of pigment quality from mill scale iron waste. Dyes Pigment 74, 161168.CrossRefGoogle Scholar
Passaglia, E., Artioli, G. & Gualtieri, A.F. ( 1998). Crystal chemistry of the zeolites erionite and offretite. Am Mineral 83(5–6), 577589.CrossRefGoogle Scholar
Rinaudo, C., Belluso, E. & Gastaldi, D. (2004). Assessment of the use of Raman spectroscopy for the determination of amphibole asbestos. Mineral Mag 68, 455465.CrossRefGoogle Scholar
Rinaudo, C., Croce, A., Musa, M., Fornero, E., Allegrina, M., Trivero, P., Bellis, D., Sferch, D., Toffalorio, F., Veronesi, G. & Pelosi, G. (2010). Study of inorganic particles, fibers and asbestos bodies by VP-SEM/EDS and micro-Raman spectroscopy in thin sections of lung and pleural plaque. Appl Spectrosc 64(6), 571577.CrossRefGoogle ScholarPubMed
Rinaudo, C., Gastaldi, D. & Belluso, E. (2003). Characterization of chrysotile, antigorite and lizardite by FT-Raman spectroscopy. Can Mineral 41, 883890.CrossRefGoogle Scholar
Rinaudo, C., Gastaldi, D., Belluso, E. & Capella, S. (2005). Application of Raman spectroscopy on asbestos fibre identification. Neues Jb Miner Abh 182/1, 3136.CrossRefGoogle Scholar
Temel, A. & Gündoğdu, M.N. (1996). Zeolite occurrences and the erionite-mesothelioma relationship in Cappadocia, Central Anatolia, Turkey. Mineral Deposita 31, 539547.CrossRefGoogle Scholar
Thibeau, R.J., Brown, C.W. & Heidersbach, R.H. (1978). Raman spectra of possible corrosion products of iron. Appl Spectrosc 32(6), 532535.CrossRefGoogle Scholar
Wagner, J.C., Skidmore, J.W., Hill, R.J. & Griffiths, D.M. (1985). Erionite exposure and mesothelioma in rats. Br J Cancer 51, 727730.CrossRefGoogle ScholarPubMed
Weinberg, E.D. (2010). The hazards of iron loading. Metallomics 2, 732740.CrossRefGoogle ScholarPubMed
World Health Organization (1986). Environmental Health Criteria 53 – Asbestos and Other Natural Mineral Fibres. International Programme for Chemical Safety. Geneva: World Health Organization.Google Scholar
Yang, H., Rivera, Z., Jube, S., Nasu, M., Bertino, P., Goparaju, C., Franzoso, G., Lotze, M.T., Krausz, T., Pass, H.I., Bianchi, M.E. & Carbone, M. (2010). Programmed necrosis induced by asbestos in human mesothelial cells causes high-mobility group box 1 protein release and resultant inflammation. Proc Natl Acad Sci USA 107(28), 1261112616.CrossRefGoogle ScholarPubMed