Hostname: page-component-8448b6f56d-gtxcr Total loading time: 0 Render date: 2024-04-19T10:45:00.670Z Has data issue: false hasContentIssue false

A Compact “Water Window” Microscope with 60 nm Spatial Resolution for Applications in Biology and Nanotechnology

Published online by Cambridge University Press:  16 September 2015

Przemyslaw Wachulak*
Affiliation:
Institute of Optoelectronics, Military University of Technology, Kaliskiego 2 Str., 00-908 Warsaw, Poland
Alfio Torrisi
Affiliation:
Institute of Optoelectronics, Military University of Technology, Kaliskiego 2 Str., 00-908 Warsaw, Poland
Muhammad F. Nawaz
Affiliation:
Faculty of Nuclear Sciences and Physical Engineering, Czech Technical University in Prague, Brehova 7,115 19 Prague 1, Czech Republic
Andrzej Bartnik
Affiliation:
Institute of Optoelectronics, Military University of Technology, Kaliskiego 2 Str., 00-908 Warsaw, Poland
Daniel Adjei
Affiliation:
Institute of Optoelectronics, Military University of Technology, Kaliskiego 2 Str., 00-908 Warsaw, Poland
Šárka Vondrová
Affiliation:
Faculty of Biomedical Engineering, Czech Technical University in Prague, Brehova 7, 115 19 Prague 1, Czech Republic
Jana Turňová
Affiliation:
Faculty of Biomedical Engineering, Czech Technical University in Prague, Brehova 7, 115 19 Prague 1, Czech Republic
Alexandr Jančarek
Affiliation:
Faculty of Nuclear Sciences and Physical Engineering, Czech Technical University in Prague, Brehova 7,115 19 Prague 1, Czech Republic
Jiří Limpouch
Affiliation:
Faculty of Nuclear Sciences and Physical Engineering, Czech Technical University in Prague, Brehova 7,115 19 Prague 1, Czech Republic
Miroslava Vrbová
Affiliation:
Faculty of Biomedical Engineering, Czech Technical University in Prague, Brehova 7, 115 19 Prague 1, Czech Republic
Henryk Fiedorowicz
Affiliation:
Institute of Optoelectronics, Military University of Technology, Kaliskiego 2 Str., 00-908 Warsaw, Poland
*
*Corresponding author. wachulak@gmail.com
Get access

Abstract

Short illumination wavelength allows an extension of the diffraction limit toward nanometer scale; thus, improving spatial resolution in optical systems. Soft X-ray (SXR) radiation, from “water window” spectral range, λ=2.3–4.4 nm wavelength, which is particularly suitable for biological imaging due to natural optical contrast provides better spatial resolution than one obtained with visible light microscopes. The high contrast in the “water window” is obtained because of selective radiation absorption by carbon and water, which are constituents of the biological samples. The development of SXR microscopes permits the visualization of features on the nanometer scale, but often with a tradeoff, which can be seen between the exposure time and the size and complexity of the microscopes. Thus, herein, we present a desk-top system, which overcomes the already mentioned limitations and is capable of resolving 60 nm features with very short exposure time. Even though the system is in its initial stage of development, we present different applications of the system for biology and nanotechnology. Construction of the microscope with recently acquired images of various samples will be presented and discussed. Such a high resolution imaging system represents an interesting solution for biomedical, material science, and nanotechnology applications.

Type
Equipment and Software Development
Copyright
© Microscopy Society of America 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Attwood, D. (1999). Soft X-Rays and Extreme Ultraviolet Radiation. Cambridge, UK: Cambridge University Press.Google Scholar
Bartnik, A., Fiedorowicz, H., Rakowski, R., Szczurek, M., Bijkerk, F., Bruijn, R. & Fledderus, H. (2001). Soft X-ray emission from a double stream gas puff target irradiated by a nanosecond laser pulse. In ECLIM 2000: 26th European Conference on Laser Interaction with Matter. Proceedings of SPIE 4424, Kálal, M., Rohlena, L. & Šinor, M. (Eds.), pp. 406–409. Bellingham, WA, USA: SPIE.Google Scholar
Benk, M., Bergmann, K., Schäfer, D. & Wilhein, T. (2008). Compact soft X-ray microscope using a gas-discharge light source. Opt Lett 33(20), 23592361.Google Scholar
Bertilson, M., von Hofsten, O., Vogt, U., Holmberg, A. & Hertz, H.M. (2009). High-resolution computed tomography with a compact soft X-ray microscope. Opt Express 17(13), 1105711065.Google Scholar
Da Silva, L.B., Trebes, J.E., Balhorn, R., Mrowka, S., Anderson, E., Attwood, D.T., Barbee, T.W. Jr., Brase, J., Corzett, M., Gray, J., Koch, J.A., Lee, C., Kern, D., London, R.A., MacGowan, B.J. & Mathews, D.L. (1992 a). X-ray laser microscopy with a rat sperm nuclei. Science 258, 269.Google Scholar
Da Silva, L.B., Trebes, J.E., Mrowka, S., Barbee, T.W. Jr., Brase, J., Koch, J.A., London, R.A., MacGowan, B.J., Matthews, D.L., Minyard, D., Stone, G., Yorkey, T., Anderson, E., Attwood, D.T. & Kern, D. (1992 b). Demonstration of X-ray microscopy with an X-ray laser operating near the carbon K edge. Opt Lett 17, 754756.Google Scholar
Fiedorowicz, H., Bartnik, A., Daido, H., Woo Choi, I., Suzuki, M. & Yamagami, S. (2000). Strong extreme ultraviolet emission from a double-stream xenon/helium gas puff target irradiated with a Nd:YAG laser. Opt Commun 184, 161167.Google Scholar
Fiedorowicz, H., Bartnik, A., Jarocki, R., Kostecki, J., Krzywinski, J., Mikołajczyk, J., Rakowski, R., Szczurek, A. & Szczurek, M. (2005). Compact laser plasma EUV source based on a gas puff target for metrology applications. J Alloys Compd 401, 99103.Google Scholar
Heck, J.M., Attwood, D.T., Meyer−Ilse, W. & Anderson, E.H. (1998). Resolution determination in X-ray microscopy. J X-Ray Sci Technol 8, 95104.Google Scholar
Johansson, G.A., Holmberg, A., Hertz, H.M. & Berglund, M. (2002). Design and performance of a laser-plasma-based compact soft X-ray microscope. Rev Sci Instrum 73(3), 11931197.Google Scholar
Kelly, R.L. (1987). Atomic and ionic spectrum lines below 2000 angstroms: Hydrogen through krypton. J Phys Chem Ref Data 16(Suppl 1), 8283.Google Scholar
Kim, K.W., Kwon, Y., Nam, K.Y., Lim, J.H., Kim, K.G., Chon, K.S., Kim, B.H., Kim, D.E., Kim, J.G., Ahn, B.N., Shin, H.J., Rah, S., Kim, K.H., Chae, J.S., Gweon, D.G., Kang, D.W., Kang, S.H., Min, J.Y., Choi, K.S., Yoon, S.E., Kim, E.A., Namba, Y. & Yoon, K.H. (2006). Compact soft X-ray transmission microscopy with sub-50 nm spatial resolution. Phys Med Biol 51, N99N107.Google Scholar
Larabell, C. & Nugent, K. (2010). Imaging cellular architecture with X-rays. Curr Opin Struct Biol 20(5), 623631.Google Scholar
Legall, H., Blobel, G., Stiel, H., Sandner, W., Seim, C., Takman, P., Martz, D.H., Selin, M., Vogt, U., Hertz, H.M., Esser, D., Sipma, H., Luttmann, J., Hofer, M., Hoffmann, H.D., Yulin, S., Feigl, T., Rehbein, S., Guttmann, P., Schneider, G., Wiesemann, U., Wirtz, M. & Diete, W. (2012). Compact X-ray microscope for the water window based on a high brightness laser plasma source. Opt Express 20(16), 1836218369.Google Scholar
Legall, H., Stiel, H., Blobel, G., Seim, C., Baumann, J., Yulin, S., Esser, D., Hoefer, M., Wiesemann, U., Wirtz, M., Schneider, G., Rehbein, S. & Hertz, H.M. (2013). A compact laboratory transmission X-ray microscope for the water window. J Phys Conf Ser 463, 012013012016.Google Scholar
Martz, D.H., Selin, M., von Hofsten, O., Fogelqvist, E., Holmberg, A., Vogt, U., Legall, H., Blobel, G., Seim, C., Stiel, H. & Hertz, H.M. (2012). High average brightness water window source for short-exposure cryomicroscopy. Opt Lett 37(21), 44254427.Google Scholar
Maser, J., Osanna, A., Wang, Y., Jacobsen, C., Kirz, J., Spector, S., Winn, B. & Tennant, D. (2000). Soft X-ray microscopy with a cryo scanning transmission X-ray microscope: I. Instrumentation, imaging and spectroscopy. J Microsc 197(1), 6879.Google Scholar
McDermott, G., Le Gros, M.A., Knoechel, C.H.G., Uchida, M. & Larabell, C.A. (2009). Soft X-ray tomography and cryogenic light microscopy: The cool combination in cellular imaging. Trends Cell Biol 19(11), 587595.Google Scholar
Meyer-Ilse, W., Hamamoto, D., Nair, A., Lelièvre, S.A., Denbeaux, G., Johnson, L., Pearson, A.L., Yager, D., Legros, M.A. & Larabell, C.A. (2001). High resolution protein localization using soft X-ray microscopy. J Microsc 201(3), 395403.Google Scholar
Michette, A.G. (1986). Optical Systems for Soft X-rays. New York, NY: Plenum Press.Google Scholar
Müller, M., Mey, T., Niemeyer, J. & Mann, K. (2014). Table-top soft X-ray microscope using laser-induced plasma from a pulsed gas jet. Opt Express 22(19), 2348923495.Google Scholar
Nakayama, S., Haramura, K., Zeng, G.M., Daido, H., Nakatsuka, M., Nakai, S., Katakura, N., Nagata, H. & Aritome, H. (1994). Zone-plate X-ray microscope using a laser plasma source. Jpn J Appl Phys 33, L1280L1282.Google Scholar
Rakowski, R., Bartnik, A., Fiedorowicz, H., De Gaufridy De Dortan, F., Jarocki, R., Kostecki, J., Mikołajczyk, J., Ryć, L., Szczurek, M. & Wachulak, P. (2010). Characterization and optimization of the laser-produced plasma EUV source at 13.5 nm based on a double-stream Xe/He gas puff target. Appl Phys B 101(4), 773789.Google Scholar
Schneider, G. (1998). Cryo X-ray microscopy with high spatial resolution in amplitude and phase contrast. Ultramicroscopy 75, 85104.Google Scholar
Takman, P.A.C., Stollberg, H., Johansson, G.A., Holmberg, A., Lindblom, M. & Hertz, H.M. (2007). High-resolution compact X-ray microscopy. J Microsc 226(2), 175181.Google Scholar
Wachulak, P.W., Bartnik, A., Fiedorowicz, H., Feigl, T., Jarocki, R., Kostecki, J., Rakowski, R. & Zawadzki, Z. (2010 a). A compact, quasi-monochromatic laser-plasma EUV source based on a double-stream gas-puff target at 13.8 nm wavelength. Appl Phys B 100(3), 461469.Google Scholar
Wachulak, P.W., Bartnik, A. & Fiedorowicz, H. (2010 b). Sub-70 nm resolution tabletop microscopy at 13.8 nm using a compact laser–plasma EUV source. Opt Lett 35(14), 23372339.Google Scholar
Wachulak, P.W., Bartnik, A., Fiedorowicz, H. & Kostecki, J. (2011). A 50nm spatial resolution EUV imaging–resolution dependence on object thickness and illumination bandwidth. Opt Express 19(10), 95419550.Google Scholar
Wachulak, P.W., Bartnik, A., Fiedorowicz, H., Rudawski, P., Jarocki, R., Kostecki, J. & Szczurek, M. (2010 c). “Water window” compact, table-top laser plasma soft X-ray sources based on a gas puff target. Nucl Instrum Met Phys Res Sec B 268(10), 16921700.Google Scholar
Wachulak, P.W., Bartnik, A., Skorupka, M., Kostecki, J., Jarocki, R., Szczurek, M., Wegrzynski, L., Fok, T. & Fiedorowicz, H. (2013 a). Water-window microscopy using a compact, laser-plasma SXR source based on a double-stream gas-puff target. Appl Phys B 111(2), 239247.Google Scholar
Wachulak, P.W., Bartnik, A., Wegrzynski, L., Kostecki, J., Jarocki, R., Fok, T., Szczurek, M. & Fiedorowicz, H. (2013 b). Sub 1-μm resolution “water-window” microscopy using a compact, laser-plasma SXR source based on a double stream gas-puff target. Nucl Instrum Met Phys Res Sec B 311, 4246.Google Scholar
Wachulak, P.W., Torrisi, A., Bartnik, A., Adjei, D., Kostecki, J., Wegrzynski, L., Jarocki, R., Szczurek, M. & Fiedorowicz, H. (2015). Desk-top water window microscope using a double stream gas puff target source. Appl Phys B 118, 573578.Google Scholar
Welvaert, M. & Rosseel, Y. (2013). On the definition of signal-to-noise ratio and contrast-to-noise ratio for fMRI data. PLoS One 8(11), e77089.CrossRefGoogle ScholarPubMed