Hostname: page-component-8448b6f56d-wq2xx Total loading time: 0 Render date: 2024-04-15T23:31:16.073Z Has data issue: false hasContentIssue false

Copper Refinement from Anode to Cathode and then to Wire Rod: Effects of Impurities on Recrystallization Kinetics and Wire Ductility

Published online by Cambridge University Press:  09 September 2015

Anne-Laure Helbert
Affiliation:
Université Paris-Sud, ICMMO, UMR CNRS 8182, Bâtiment 410, 91405 Orsay Cedex, France
Alice Moya
Affiliation:
DIMEC, FCFM, U. de Chile and Codelco. Beauchef #850, Santiago, Chile
Tomas Jil
Affiliation:
DIMEC, FCFM, U. de Chile and Codelco. Beauchef #850, Santiago, Chile
Michel Andrieux
Affiliation:
Université Paris-Sud, ICMMO, UMR CNRS 8182, Bâtiment 410, 91405 Orsay Cedex, France
Michel Ignat
Affiliation:
DIMEC, FCFM, U. de Chile and Codelco. Beauchef #850, Santiago, Chile
François Brisset*
Affiliation:
Université Paris-Sud, ICMMO, UMR CNRS 8182, Bâtiment 410, 91405 Orsay Cedex, France
Thierry Baudin
Affiliation:
Université Paris-Sud, ICMMO, UMR CNRS 8182, Bâtiment 410, 91405 Orsay Cedex, France
*
*Corresponding author. francois.brisset@u-psud.fr
Get access

Abstract

In this paper, the traceability of copper from the anode to the cathode and then the wire rod has been studied in terms of impurity content, microstructure, texture, recrystallization kinetics, and ductility. These characterizations were obtained based on secondary ion mass spectrometry, differential scanning calorimetry (DSC), X-ray diffraction, HV hardness, and electron backscattered diffraction. It is shown that the recrystallization was delayed by the total amount of impurities. From tensile tests performed on cold drawn and subsequently annealed wires for a given time, a simplified model has been developed to link tensile elongation to the chemical composition. This model allowed quantification of the contribution of some additional elements, present in small quantity, on the recrystallization kinetics. The proposed model adjusted for the cold-drawn wires was also validated on both the cathode and wire rod used for the study of traceability.

Type
EMAS Special Issue
Copyright
© Microscopy Society of America 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Archbutt, S.L., Prytherch, W.E., Rosenhain, W. & Desch, C.H. (1937). Effects of Impurities in Copper. British Non Ferrous Metals Research Association. University of Cornell.Google Scholar
Armstrong, D., Wilkinson, A. & Roberts, S. (2011). Micro-mechanical measurements of fracture toughness of Bismuth embrittlement copper grain boundaries. Philos Mag Lett 91, 394400.CrossRefGoogle Scholar
Benchabane, G., Boumerzoug, Z., Thibon, I. & Gloriant, T. (2008). Recrystallization of pure copper investigated by calorimetry and microhardness. Mater Charact 59, 14251428.Google Scholar
Bingley, M.S. & Davis, D.W. (1979). Electron beam welding copper and dilute copper alloys. BNF Report 608.Google Scholar
British Standard Draft BSI (2011). NFE/34 EN 1977:2013 copper drawing stock (wire rod), ISBN:9780580764066, BSI, London.Google Scholar
Camurri, C., Carrasco, C. & Albretch, S. (2012). Impurities on cathodic copper: Study of their influence on the ductility of copper wires and development of mechanical tests sensible to such impurities. Mater Sci Forum 706–709, 899906.Google Scholar
Coutsouradis, D., Diderrich, E., Smets, J., Crocq, G. & Pauwels, L. (1974). Effect of trace amounts of impurities on the recrystallization behavior of high-purity tough-pitch copper. Metall Rep CRM 39, 7384.Google Scholar
Feyaerts, K., Huybrechts, P., Schamp, J., Van Humbeeck, J. & Verlinden, B. (1996). The effects of impurities on the recrystallization behavior of tough-pitch hot rolled copper rod. Wire J Int 26, 6876.Google Scholar
Gerber, P., Jakani, S., Mathon, M.H. & Baudin, T. (2005). Neutron diffraction measurements of deformation and recrystallization textures in cold wire-drawn copper. Mater Sci Forum 495–497, 919924.CrossRefGoogle Scholar
González, R. & Hidalgo, P. (2006). Estudio de propiedades mecánicas de cátodos y alambrones de cobre. Undergraduate Thesis, Universidad de Chile, Santiago, Chile.Google Scholar
Harper, S., Callcut, V., Townsend, D.W. & Eborall, R. (1961–1962 a). The embrittlement of tough pitch copper windings in hydrogen cooled electrical generators. J Inst Metals 90, 414423.Google Scholar
Harper, S., Callcut, V., Townsend, D.W. & Eborall, R. (1961–1962 b). The embrittlement of tough pitch copper during annealing or preheating. J Inst Metals 90, 423429.Google Scholar
Henderson, P.J., Österberg, J.O. & Ivarsson, B. (1992). Low temperature creep of copper intended for nuclear waste containers, SKB Technical Report 92-04. Swedish Institute for Metals Research, Stockholm.Google Scholar
Humphreys, F.J. & Rollett, A. (2004). Recrystallization and Related Annealing Phenomena. Oxford: Elsevier Science.Google Scholar
Ignat, M. (2013). Effects of impurities and reliability of copper qualifications—A traceability analysis. World Metall—ERZMETALL 66(5), 274283.Google Scholar
Jakani, S. (2004). Effet des Impuretés sur les Mécanismes de Recristallisation du Cuivre Trefilé. PhD Thesis, Université Paris-Sud, Orsay, France.Google Scholar
Jakani, S., Baudin, T., De Novion, C.H. & Mathon, M.H. (2007). Effect of impurities on the recrystallization texture in commercially pure copper-ETP wires. Mater Sci Eng A 456, 261269.CrossRefGoogle Scholar
Jakani, S., Mathon, M.H., Gerber, P., Benyoucef, M., De Novion, C.H. & Baudin, T. (2004). Influence of oxygen content on the static recrystallization of ETP copper. Mater Sci Forum 467–470, 471476.CrossRefGoogle Scholar
Kissinger, H.E. (1956). Variation of peak temperature with heating rate in differential thermal analysis. J Res Nat Bur Stand 57, 217221.Google Scholar
Magaña, J.L. & Fernandez, E. (2009). Rapid tensile test elongation study for measuring the annealability of copper rod. Wire J Int 42, 7679.Google Scholar
Mckay, K.E. & Armstrong-Smith, G. (1966). Quality control of electrolytic tough pitch copper. Inst Min Metall Trans 75C, 269285.Google Scholar
Nieh, T.G. & Nix, W.D. (1981). Embrittlement of copper due to segregation of oxygen to grain boundaries. Metall Trans A 12, 893901.CrossRefGoogle Scholar
Pawlik, K. (1986). Determination of the orientation distribution function from pole figures in arbitrarily defined cells. Phys Stat Sol (B) 134, 477483.Google Scholar
Philibert, J., Vignes, A., Brechet, Y. & Combrade, P. (1998). Métallurgie, du minerai au matériau, Ed. Masson. Issy les moulineaux, France.Google Scholar
Pops, H. (1987). Copper rod requirements for magnets. Wire J Int, 5970.Google Scholar
Pops, H. & Holloman, J. (1994). Effects of oxygen concentration on the recrystallization behavior of copper wire. Wire J Int 27, 7083.Google Scholar
Ravichandran, N. & Prasad, Y.V.R.K (1992). Influence of oxygen on dynamic recrystallization during hot working of polycrystalline copper. Mater Sci Eng A 156, 195204.CrossRefGoogle Scholar
Smart, J.S. (1954). The effects of impurities in copper. In Copper: The Metal its Alloys and Compounds, Butts A. (Ed.), pp. 410416. New York, NY: Reinholt.Google Scholar
Smart, J.S. & Smith, A. (1943). Effect of certain fifth period element on some properties of high purity copper. Trans Am Inst Min Eng 152, 103121.Google Scholar
Su, Y.Y. (1982). Analysis of the factors affecting the drawability of copper rod. Wire J 15, 7479.Google Scholar
Takuno, N., Yajima, K. & Mae, Y. (1996). The analysis of grain boundary segregation of sulfur in commercially pure coppers. J Jpn Copper Brass Res Ass 35, 204210.Google Scholar