Hostname: page-component-7c8c6479df-ws8qp Total loading time: 0 Render date: 2024-03-29T15:56:44.664Z Has data issue: false hasContentIssue false

Metals in Human Gall, Bladder, and Kidney Stones Based on an Electron Microprobe Investigation

Published online by Cambridge University Press:  28 May 2015

Reinhard Moser*
Affiliation:
LKH-Hospital of Leoben, Vordernbergerstraße 42, A 8700, Leoben, Austria
Federica Zaccarini
Affiliation:
Department of Applied Geosciences and Geophysics, University of Leoben, Peter Tunner Str. 5, A 8700, Leoben, Austria
Waltraud Moser
Affiliation:
LKH-Hospital of Bruck an der Mur, Tragösserstrasse 1, A 8600, Bruck an der Mur, Austria
Rudolf Schrittwieser
Affiliation:
LKH-Hospital of Bruck an der Mur, Tragösserstrasse 1, A 8600, Bruck an der Mur, Austria
Reinhold Kerbl
Affiliation:
LKH-Hospital of Leoben, Vordernbergerstraße 42, A 8700, Leoben, Austria
*
*Corresponding author. reinhard.moser@kages.at
Get access

Abstract

Several particles of copper accompanied by a few particles of nickel, lead, and a compound composed of selenium containing minor Ni, Si, Cu, and Co were found in human gall, kidney, and bladder stones. The investigated particles occur as tiny grains, <10 µm in size, that are irregularly dispersed in the stones. Therefore, they were studied by scanning electron microscopy and qualitatively analyzed by energy dispersive system. One grain of copper contained a small amount of Ni and Zn, and some grains of nickel proved to contain Cr as trace element. Most of the discovered metals formed a single-phase grain. However, a few grains found in two gallstones were associated with inclusions of calcium and apatite. Based on the results presented in this contribution, we argue that most of the studied metals can be classified as endogenous particles, i.e., directly precipitated from the same fluids that formed their host human stones. This observation suggests that the precipitation and accumulation of metals in some human stones can be considered an efficient way to eliminate them from the human body.

Type
EMAS Special Issue
Copyright
© Microscopy Society of America 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abdel-Gawad, M., Ali-El-Dein, B., Mehta, S., Al-Kohlany, K.M. & Elsobky, E. (2014). A correlation study between macro- and micro-analysis of pediatric urinary calculi. J P ediatr Urol 10, 12671272.Google Scholar
Abraham, J.L. & Burnett, B.R. ( 1983). Quantitative analysis of inorganic particulate burden in situ in tissue sections. Scan Electron Microsc 2, 681696.Google Scholar
Addis, J. & Catterall, M.D. (2006). Plumbosis cutis—Report of an unusual case defined by electron probe microanalysis. Clin Exp Dermatol 7, 573580.Google Scholar
Aoi, T., Higuchi, T., Kidokoro, R., Fukumara, R., Yagi, A., Ohguchi, S., Sasa, A., Hayashi, H., Sakamoto, W. & Hanaichi, T. (1985). An association of mercury with selenium in inorganic mercury intoxication. Hum T oxicol 4, 637642.Google ScholarPubMed
Athanasiadu, D., Godelitas, A., Sokaras, D., Karydas, A.G., Dotsika, E., Potamitis, C., Zervou, M., Xanthos, S., Chatziheodoridis, E., Gooi, H.C. & Becker, U. (2013). New insights into the chemical and isotopic composition of human-body biominerals, I: Cholesterol gallstones from England and Greece. J Trace Elem Med Biol 27, 7984.Google Scholar
Baggio, B., Giannossi, M.L., Medici, L., Summa, V. & Tateo, F. (2012). X-ray microdiffraction and urine: A new method of crystalluria. J Xray Sci Technol 20, 489498.Google ScholarPubMed
Baker, D., Kupke, K.G., Ingram, P., Roggli, V.L. & Shelburne, J.D. (1985). Microprobe analysis in human pathology. Scan Electron Microsc 2, 659680.Google Scholar
Been, J.M., Bills, P.M. & Lewis, D. (1977). Electron probe microanalysis in the study of gallstones. Gut 18, 836842.CrossRefGoogle Scholar
Berry, J.P., Poupon, M.F., Judde, J.C. & Galle, P. (1985). In vitro electron microprobe of carcinogenic nickel compound interaction with tumor cells. Ann Clin Lab Sci 15, 109120.Google ScholarPubMed
Bertoldi, C., Zaffe, D., Bellini, P. & Consolo, U. (2001). Metallic elements in tissue surrounding internal rigid fixation (IRF) devices. Minerva Stomatol 50, 121132.Google Scholar
Bielecka, K., Kurtek, W., Banas, D., Kubala-Kukus, A., Braziewicz, J., Majewska, U., Pajek, M., Wudarczyk-Mocko, J. & Stabrawa, I. (2014). X-ray diffraction and elemental analysis of medical and environmental samples. Acta Phys Pol A 125, 911918.Google Scholar
Bulger, R.E. (1980). X-ray microanalysis of the kidney. Scan Electron Microsc 2, 511516.Google Scholar
Buxaderas, S.C. & Farré-Rovira, R. ( 1986). Whole blood and serum copper levels in relation to sex and age. Rev Esp Fisiol 42, 213217.Google Scholar
Giannosi, M.L., Mongelli, G., Tateo, F. & Summa, V. (2012). Mineralogical and morphological investigation of kidney stones of a Mediterranean region (Basilicata, Italy). J Xray Sci Technol 20, 175186.Google Scholar
Giannosi, M.L., Summa, V. & Mongelli, G. (2013). Trace element investigations in urinary stones: A preliminary pilot case in Basilicata (Southern Italy). J Trace Elem Med Biol 27, 9197.Google Scholar
Guerra-Lopez, J.R., Guida, J.A. & Della Vedova, C.O. (2010). Infrared and Raman studies on renal stones: The use of second derivate infrared spectra. Urol Res 38, 383390.CrossRefGoogle ScholarPubMed
Hussain, S.A. & Al-Jashamy, K. (2013). Determination of chemical composition of gallbladder stones and their association with induction of cholangiocarcinoma. Asian Pac J Cancer Prev 14, 62576260.Google Scholar
Jederlinic, P.J., Abraham, J.L., Curg, A., Himmelstein, J.S., Epler, G.R. & Gaensler, E.A. (1990). Pulmonary fibrosis in aluminum oxide workers: Investigation of nine workers, with pathological examination and microanalysis in three of them. Am Rev Respir Dis 142, 11791184.CrossRefGoogle ScholarPubMed
Kafman, H.S., Lillemoe, K.D., Majnuson, T.H., Frasca, P. & Pitt, H.A. (1990). Backscattered electron imaging and windowless energy dispersive X-ray microanalysis: A new technique for gallstone analysis. Scanning Microsc 4, 853860.Google Scholar
Kalimo, K., Lammintausta, K.J., Maki, J., Teuho, J. & Jansen, T. (1985). Nickel penetration in allergic individuals: Bioavailability versus X-ray microanalysis detection. Contact Dermatitis 12, 255257.Google Scholar
Kodaka, T., Mori, R., Debari, K., Takichugi, R. & Higasi, S. (1995). Backscattered electron imaging and energy dispersive X-ray microanalysis studies of calcium salt heterogeneity in fifteen gallstone from an elderly human. Scanning Microsc 9, 970974.Google Scholar
Laker, M. (1982). On determining trace elements levels in man: The uses of blood and hair. Lancet 320, 260262.Google Scholar
LeFurgey, A. & Ingram, P. (2013). Electron probe X-ray microanalysis in pathology and research. Microsc Microanal 19, 12.Google Scholar
McMahon, J.T., Tubbs, R.R. & Bergfeld, W.F. (1982). X-ray spectroscopy localization of selenium in four patients having heavy metals intoxications. Emerg Med Serv Authority 40, 326327.Google Scholar
Moser, R., Zaccarini, F., Schweintzger, G. & Kerbl, R. (2012). Submandibuläre schmerzhafte Schwellung. Monat Kinder 160, 831836.Google Scholar
Nuttall, K.L. (2006). Evaluating selenium poisoning. Ann Clin Lab Sci 36, 409420.Google Scholar
Papanikolaou, N.C., Hatzidaki, E.G., Belivanis, S., Tzanakakis, G.N. & Tsatsakis, A.M. (2005). Lead toxicity update. A brief review. Med Sci Monit 11, 329336.Google Scholar
Patil, Y.P., Pawar, S.H., Jadhav, S. & Kadu, J.S. (2013). Biochemistry of metal absorption in human body: Reference to check impact of nano particles on human being. Int J Sci Res Publ 3, 15.Google Scholar
Raasch, F.O., Rosenberg, J.H. & Abraham, J.L. (1983). Lead poisoning from hair spray ingestion. Am J Forensic Med Pathol 4, 159164.Google Scholar
Sarafanov, A.G., Todorov, T.I., Centeno, J.A., Macias, V., Gao, W., Liang, W.M., Beam, C., Gray, M.A. & Kajdacsy-Balla, A.A. (2011). Prostate cancer outcome and tissue levels of metal ions. Prostate 71, 12311238.Google Scholar
Shahgaldi, B.F., Heatley, F.W., Dewar, A. & Corrin, B. (1995). In vivo corrosion of cobalt-chromium and titanium wear particles. J Bone Joint Surg Br 77, 962966.CrossRefGoogle ScholarPubMed
Sporn, T.A., Shelburne, J.D., Roggli, V.L. & Ingram, P. (1999). Overview of applications in medicine. In Biomedical Applications of Microprobe Analysis, Ingram, P., Shelburne, J., Roggli, V. & LeFurgey, A. (Eds.), pp. 87121. San Diego, California, USA: Academy Press.Google Scholar
Staples, B.A., Potgieter, F., Duyvene De Wit, L.J. & De Bruyn, H. (1992). Lenticular chalcosis—Electron microscopic and microprobe analysis. A case report. S Afr Med J 81, 274276.Google Scholar
Teranishi, S., Ishida, Y., Sakaguchi, M., Matsumoto, K., Matsuo, N. & Okajima, K. (1980). Simultaneous determination of gallstone structure and composition by probe X-ray microanalyzer. Bull Osaka Med Sch 26, 1520.Google Scholar
Urban, R.M., Jacobs, J.J., Tomlinson, M.J., Gavrilovic, J., Black, J. & Peoch, M. (2000). Dissemination of wear particles to the liver, spleen, and abdominal lymph nodes of patients with hip or knee replacement. J Bone Joint Surg Am 82, 457477.Google Scholar
Wadhwa, S.K., Kazi, T.G., Afridi, H.I. & Talpur, F.N. (2015). Interaction between carcinogenic and anti-carcinogenic trace elements in the scalp hair samples of different types of Pakistan female cancer patients. Clin Chim Acta 439, 178184.Google Scholar
Walraven, N., Bakker, M., van Os, B.J.H., Klaver, G.Th., Middelburg, J.J. & Davies, G.R. (2015). Factors controlling the oral bioaccessibility of anthropogenic Pb in polluted soils. Sci Total Environ 506–507, 149163.Google Scholar
Washington, M.K. & Barham, S.S. (1999). Microprobe analysis in hepatic metal overload disease states. In Biomedical Applications of Microprobe Analysis, Ingram, P., Shelburne, J., Roggli, V. & LeFurgey, A. (Eds.), pp. 339371. San Diego, California, USA: Academy Press.CrossRefGoogle Scholar
Wei, X.L., He, J.R., Cen, Y.L., Su, Y., Chen, L.J., Lin, Y., Wu, B.H., Su, F.X., Tang, L.Y. & Ren, Z.F. (2015). Modified effect of urinary cadmium on breast cancer risk by selenium. Clin Chim Acta 438, 8085.Google Scholar
Wosiewitz, U. (1982). Scanning electron microscopy in gallstone research. Scan Electron Microsc 1, 419430.Google Scholar
Zaffe, D., Bertoldi, C. & Consolo, U. (2003). Element release from titanium device used in oral and maxillofacial surgery. Biomaterials 24, 10931099.Google Scholar
Zaffe, D., Bertoldi, C. & Consolo, U. (2004). Accumulation of aluminium in lamellar bone after implantation of titanium plates, Ti-6Al-4V screws, hydroxyapatite granules. Biomaterials 25, 38373844.CrossRefGoogle ScholarPubMed