Hostname: page-component-8448b6f56d-jr42d Total loading time: 0 Render date: 2024-04-16T20:00:49.843Z Has data issue: false hasContentIssue false

Age Dating from Electron Microprobe Analyses of U, Th, and Pb: Geological Advantages and Analytical Difficulties

Published online by Cambridge University Press:  04 May 2015

John F.W. Bowles*
Affiliation:
School of Earth, Atmospheric and Environmental Sciences, University of Manchester, Manchester M13 9PL, UK
*
*Corresponding author.john.bowles@wanadoo.fr
Get access

Abstract

Electron microprobe analysis of U, Th, and Pb in naturally occurring minerals can indicate their age. Where the Pb is entirely due to the radioactive decay of U and Th, the time since mineral formation or equilibration can be calculated. Uraninite (UO2), monazite (REE PO4), zircon (ZrSiO4), and xenotime (YPO4) have been used, the latter containing U and/or Th in minor proportions. Any stable U- or Th-bearing phase can be considered. Careful analysis is required with attention to interferences, background measurement, detection limits, and Pb-free sample preparation. Extended counting times (600 s) at a probe current >200 nA are recommended. Ages can be determined from uraninite older than 2 Ma for a Pb detection limit of 0.02% and up to 700−1,000 Ma, after which Pb can be lost from the structure. The youngest monazite ages permitted by the Pb detection limit are 50–100 Ma and ages greater than 3,000 Ma have been determined. The method does not provide the detail of isotopic methods, but results can be obtained more readily. Examples show dating of cheralite ((Ca,Ce)(Th,Ce)(PO4)2), a rock containing primary and secondary UO2, and a suite of detrital uraninite grains that formed a part of a mineral exploration program.

Type
EMAS Special Issue
Copyright
© Microscopy Society of America 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Basham, I.R., Bowles, J.F.W., Atkin, D. & Bland, D.J. (1982a). Mineralogy of uranium distribution in samples of unaltered and sericitized granite from Urgeiriça, Portugal, in relation to mineralization processes. International Atomic Energy Authority, Vienna, publication IAEA-TC-295/2, 299-309.Google Scholar
Basham, I.R., Vairinho, M.M.B. & Bowles, J.F.W. (1982b). Uranium-bearing accessory minerals in the São Pedro du Sul granite, Portugal. International Atomic Energy Authority, Vienna, publication IAEA-TC-295/1, 279-298.Google Scholar
Boriani, A., Burlini, L., Caironi, V., Giobbi Origoni, E., Sassi, A. & Sesana, E. (1988). Geological and petrological studies on the Hercynian plutonism of Serie dei Laghi—Geological map of its occurrence between Valsesia and Lago Maggiore (N-Italy). Rend Soc Ital Mineral Petrol 43, 367384.Google Scholar
Bowie, S.H.U. & Horne, J.E.T. (1953). Cheralite, a new mineral of the monazite group. Mineral Mag 30, 9399.Google Scholar
Bowles, J.F.W. (1990). Age dating of individual grains of uraninite in rocks from electron microprobe analyses. Chem Geol 83, 4753.CrossRefGoogle Scholar
Bowles, J.F.W., Howie, R.A., Vaughan, D.J. & Zussman, J. (2011). Non-silicates: Oxides, hydroxides and sulphides , The Rock Forming Minerals, 5a, London: The Geological Society, 920pp.Google Scholar
Bowles, J.F.W., Jobbins, E.E. & Young, B.R. (1980). A re-examination of cheralite. Mineral Mag 43, 885888.CrossRefGoogle Scholar
Braun, I. & Bröcker, M. (2004). Monazite dating of granitic gneisses and leucogranites from the Kerala Khondalite Belt, southern India: Implications for Late Proterozoic crustal evolution in East Gondwana. Int J Earth Sci 93, 1322.CrossRefGoogle Scholar
Caruba, R., Baumer, A., Ganteaume, M. & Iacconi, P. (1985). An experimental study of hydroxyl groups and water in synthetic and natural zircons: a model of the metamict state. Amer Mineral 70, 12241231.Google Scholar
Cenki, B., Braun, I. & Bröcker, M. (2004). Evolution of the continental crust in the Kerala Khondalite Belt, southernmost India: Evidence from Nd isotope mapping, U-Pb and Rb-Sr geochronology. Precambrian Res 134, 275292.CrossRefGoogle Scholar
Cocherie, A., Mezeme, E.B., Legendre, O., Fanning, C.M., Faure, M. & Rossi, P. (2005). Electron-microprobe dating as a tool for determining the closure of Th-U-Pb systems in migmatitic monazites. Amer Mineral 90, 607618.CrossRefGoogle Scholar
Cox, R.A., Wilton, D.H.C. & Košler, J. (2003). Laser-ablation U-Th-Pb in situ dating of zircon and allanite: An example from the October Harbour granite, central coastal Labrador, Canada. Can Mineral 41, 273294.Google Scholar
Dahl, P.S., Hamilton, M.A., Jercinovic, M.J., Terry, M.P., Williams, M.L. & Frei, R. (2005a). U-Th-Pb dating by electron microprobe: An example from metamorphic rocks of the eastern Wyoming Craton (U.S.A.). Amer Mineral 90, 619638.CrossRefGoogle Scholar
Dahl, P.S., Terry, M.P., Jercinovic, M.J., Williams, M.L., Hamilton, M.A., Foland, K.A., Clement, S.M. & Friberg, L.M. (2005b). Electron probe (Ultrachron) microchronometry of metamorphic monazite: Unraveling the timing of polyphase thermotectonism in the easternmost Wyoming Craton (Black Hills, South Dakota). Amer Mineral 90, 17121728.Google Scholar
da Rosa-Costa, L.T., Lafon, J.-M., Cocherie, A. & Delor, C. (2008). Electron microprobe U–Th–Pb monazite dating of the Transamazonian metamorphic overprint on Archean rocks from the Amapa Block, southeastern Guiana Shield, Northern Brazil J South Am Earth Sci 26, 445462.Google Scholar
Eggins, S.M., Grün, R., McCulloch, M.T., Pike, A.W.G., Chappell, J., Kinsley, L., Mortimer, G., Shelley, M., Murray-Wallace, C.V., Spötl, C. & Taylor, L. (2005). In situ U-series dating by laser-ablation multi-collector ICPMS: New prospects for Quaternary geochronology. Quat Sci Rev 24, 25232538.CrossRefGoogle Scholar
Faure, G. (1977). Principles of Isotope Geology. New York: John Wiley & Sons.Google Scholar
Goncalves, P., Williams, M.L. & Jercinovic, M.J. (2005). Electron-microprobe age mapping of monazite. Amer Mineral 90, 578585.Google Scholar
Harris, N.B.W., Santosh, M. & Taylor, P.N. (1994). Crustal evolution in South India: Constraints from Nd isotopes. J Geol 102, 139150.CrossRefGoogle Scholar
Holland, H.D. & Gottfried, D. (1955). The effect of nuclear radiation on the structure of zircon. Acta Crystallogr 8, 291300.Google Scholar
Hu, H., Wang, R.C., Chen, W.F., Chen, P.R., Ling, H.F. & Liu, G.N. (2013). Timing of hydrothermal activity associated with the Douzhashan U-bearing granite and its significance for U mineralization in northeastern Guangxi, China. Chin Sci Bull 58, 43194328.CrossRefGoogle Scholar
IMA (2014). The list of known minerals is updated regularly and the most recent list was published in December 2014. Available at http://nrmima.nrm.se//IMA_Master_List_%282014-12%29.pdf (retrieved 11 April 2015).Google Scholar
Jaffey, A.H., Flynn, K.F., Glendenin, L.E., Bentley, W.C. & Essling, A.M. (1971). Precision measurement of half-lives and specific activities of 235U and 238U. Phys Rev C Nucl Phys 4, 18891906.Google Scholar
Jercinovic, M.J. & Williams, M.L. (2005). Analytical perils (and progress) in electron microprobe trace element analysis applied to geochronology: Background acquisition, interferences, and beam irradiation effects. Amer Mineral 90, 526546.CrossRefGoogle Scholar
Kucha, H., Lis, J. & Sylwestrzak, H. (1986). The application of electron microprobe to dating of U-Th-Pb uraninite from the Karkonosze granites (Lower Silesia). Mineralogia Polonica 17, 4347.Google Scholar
Kuiper, Y.D. (2005). Isotopic age constraints from electron microprobe U-Th-Pb dates, using a three-dimensional concordia diagram. Amer Mineral 90, 586591.CrossRefGoogle Scholar
LeRoux, L.J. & Glendenin, L.E. (1963). Half-life of Th-232. In Proceedings National Conference on Nuclear Energy: Application of Isotopes and Radiation, Warren, F.L. (Ed.) 8394. Pretoria, South Africa: Atomic Energy Board.Google Scholar
Loehn, C.W. (2011). Investigation of the monazite chemical dating technique. PhD Thesis. Virginia Polytechnic Institute and State University. Electronic dissertation published as an ebook. Available at http://scholar.lib.vt.edu/theses/available/etd-05122011-164811/ (retrieved 11 April 2015).Google Scholar
McClenaghan, M.B. & Kjarsgaard, B.A. (2001). Indicator mineral and geochemical methods for diamond exploration in glaciated terrain in Canada. In Drift Exploration in Glaciated Terrain. McClenaghan, M.B., Bobrowsky, T., Hall, G.E.M. & Cook, S.J. (Eds.). Special Publication, 185, 83123. London: Geological Society.Google Scholar
McFarlane, C.R.M. & Harrison, M.T. (2006). Pb-diffusion in monazite: Constraints from a high-T contact aureole setting. Earth Planet Sci Lett 250, 376384.Google Scholar
Montel, J.-M., Fort, S., Veschambre, M., Nicollet, C. & Provost, A. (1996). Electron microprobe dating of monazite. Chem Geol 131, 3753.CrossRefGoogle Scholar
Montel, J.-M., Kornprobst, J. & Vielzeuf, D. (2000). Preservation of old U–Th–Pb ages in shielded monazite: Example from the Beni Bousera Hercynian kinzigites (Morocco). J Metamorphic Geol 18, 335342.Google Scholar
Pabst, A. (1955). The metamict state. Amer Mineral 37, 137157.Google Scholar
Parrish, R.R. (1990). U-Pb dating of monazite and its application to geological problems. Can J Earth Sci 27, 14311450.Google Scholar
Parslow, G.R., Brandstätter, F., Kurat, G. & Thomas, D.J. (1985). Chemical ages and mobility of U and Th in anatectites of the Cree Lake Zone, Saskatchewan. Canad Mineral 23, 543551.Google Scholar
Pinarelli, L. & Boriani, A. (2007). Tracing metamorphism, magmatism and tectonics in the southern Alps (Italy): Constraints from Rb-Sr and Pb-Pb geochronology, and isotope geochemistry. Period Mineral 76, 524.Google Scholar
Pinarelli, L., Boriani, A. & Del Moro, A. (1988). Rb-Sr geochronology of the Lower Permian plutonism in Massiccio dei Laghi, Southern Alps (NW Italy). Rend Soc Ital Mineral Petrol 43, 411428.Google Scholar
Pyle, J.M., Spear, F.S., Wark, D.A., Daniel, C.G. & Storm, L.C. (2005). Contributions to precision and accuracy of monazite microprobe ages. Amer Mineral 90, 547577.CrossRefGoogle Scholar
Rajesh, H.M. & Santosh, M. (2004). Charnockitic magmatism in southern India. Proc Indian Acad Sci, Earth Planet Sci 113, 565585.Google Scholar
Rhede, D., Wendt, I. & Förster, H.-J. (1996). A three-dimensional method for calculating independent chemical U/Pb- and Th/Pb-ages of accessory minerals. Chem Geol 130, 247253.CrossRefGoogle Scholar
Santosh, M., Tagawa, M., Yokoyama, K. & Collins, A.S. (2006). U-Pb electron probe geochronology of the Nagercoil granulites, southern India: Implications for Gondwana amalgamation. J Asian Earth Sci 28, 6380.CrossRefGoogle Scholar
Scott, V.D., Love, G. & Reed, S.J.B. (1995). Quantitative Electron-Probe Microanalysis, 2nd ed. Chichester, UK: Ellis Horwood Ltd.Google Scholar
Scherrer, N.C., Engi, M., Gnos, E., Jakob, V. & Liechti, A. (2000). Monazite analysis; from sample preparation to microprobe age dating and REE quantification. Schweiz Mineral Petrogr Mitt 80, 93105.Google Scholar
Schulz, B. & von Raumer, J.F. (2011). Discovery of Ordovician–Silurian metamorphic monazite in garnet metapelites of the Alpine External Aiguilles Rouges Massif. Swiss J Geosci 104, 6779.Google Scholar
Searle, M.P., Simpson, R.L., Law, R.D., Parrish, R.R. & Waters, D.J. (2003). The structural geometry, metamorphic and magmatic evolution of the Everest massif, High Himalaya of Nepal–South Tibet. J Geol Soc (London, U.K.) 160, 345366.Google Scholar
Simpson, P.R. & Bowles, J.F.W. (1977). Uranium mineralisation of the Witwatersrand and Dominion Reef Systems. Philos Trans R Soc London, A. 286, 527548.Google Scholar
Simpson, P.R. & Bowles, J.F.W. (1981). Detrital uraninite and pyrite: Are they evidence for a reducing atmosphere? In Genesis of Uranium- and Gold-bearing Precambrian Quartz-Pebble Conglomerates (U.S. Geological Survey Professional Paper 1161, Armstrong, F. C. (Ed.), pp. S1S12). Washington: United States Government Printing Office.Google Scholar
Sinclair, H.D. & Jaffey, N. (2001). Sedimentology of the Indus Group, Ladakh, northern India: Implications for the timing of initiation of the palaeo-Indus River. J Geol Soc (London, U.K.) 158, 151162.CrossRefGoogle Scholar
Singh, S. (2001). Status of geochronological studies in Himalaya: A review. J Indian Geophys Union 5, 5772.Google Scholar
Stille, P. & Buletti, M. (1987). Nd-Sr isotopic characteristics or the Lugano volcanic rocks and constraints on the continental crust formation in the South Alpine domain (N-Italy-Switzerland). Contrib Mineral Petrol 96, 140150.Google Scholar
Suzuki, K. & Adachi, M. (1991). Precambrian provenance and Silurian metamorphism of the Tsbonosawa paragneiss in the South Kitakami terrane, northeast Japan, as revealed by the chemical Th-U-total Pb isochron ages of monazite, zircon, and xenotime. Geochem J 25, 357376.Google Scholar
Suzuki, K., Adachi, M. & Kajizuka, I. (1994). Electron microprobe observations of diffusion in metamorphosed detrital monazites. Earth Planet Sci Lett 128, 391405.Google Scholar
Whitehouse, M.J., Moorbath, S. & Kamber, B.S. (1998). Interpretation of ion-probe U-Pb dates from early Archean zircons—Implications for the age of the earliest life on Earth. Mineral Mag 62A, 16491650.CrossRefGoogle Scholar
Williams, M.L., Jercinovic, M.J. & Terry, M.P. (1999). Age mapping and dating of monazite on the electron microprobe: Deconvoluting multistage tectonic histories. Geology 27, 10231026.Google Scholar
Wolff, R., Dunkl, I., Kiesselbach, G., Wemmer, K. & Siegesmund, S. (2012). Thermochronological constraints on the multiphase exhumation history of the Ivrea-Verbano Zone of the Southern Alps. Tectonophysics 579, 104117.Google Scholar
Woodhead, J.A., Rossman, G.R. & Silver, L.T. (1991). The metamictisation of zircon: Radiation dose-dependent structural characteristics. Amer Mineral 76, 7482.Google Scholar