Hostname: page-component-7c8c6479df-ph5wq Total loading time: 0 Render date: 2024-03-28T16:02:55.228Z Has data issue: false hasContentIssue false

Late Cambrian (middle Furongian) shallow-marine dysoxic mudstone with calcrete and brachiopod–olenid–Lotagnostus faunas in Avalonian Cape Breton Island, Nova Scotia

Published online by Cambridge University Press:  12 March 2015

ED LANDING*
Affiliation:
New York State Museum, 222 Madison Avenue, Albany, New York 12230, USA Department of Earth and Environmental Sciences and Lamont-Doherty Earth Observatory of Columbia University, Palisades, NY 10964, USA
STEPHEN R. WESTROP
Affiliation:
Oklahoma Museum of Natural History and School of Geology and Geophysics, University of Oklahoma, Norman, Oklahoma 73072, USA
*
Author for correspondence: ed.landing@nysed.gov

Abstract

The common belief that organic-rich mudstones formed in quiescent, distal settings is further weakened by study of an upper Cambrian (Leptoplastus – lower Peltura superzones) succession in the Chesley Drive Group in Avalonian Cape Breton Island that is comparable to Alum Shale successions in Baltica. Dramatic sea-level (likely eustatic) changes are now recognized by punctuation of deposition of shallow, wave-influenced black mudstone with brachiopod (Orusia lenticularis) and olenid trilobite-bearing limestones by offlap and formation of a subaerially cemented calcrete-clast conglomerate. Subaerial exposure was followed by transgression and accumulation of clastic pyrite sand and phosphatic granules with Leptoplastus Superzone (L. ovatus Zone) trilobite sclerites. Dynamic processes are shown by wave ripples in the mudstone and limestone, sorting and winnowing of fossil rudstones, and pre-compactional fracture of the conglomerate and rudstones. Orusia rudstones in the succession below the conglomerate are regarded as analogues of Eoorthis and Billingsella rudstones in the ‘biomere’ extinction intervals of the Laurentian basal Sunwaptan. The lowest Orusia-rich beds are no older than the P. spinulosa Zone but, as elsewhere in Avalonia, they range into the higher Leptoplastus (Cape Breton) and even the Peltura (Britain, New Brunswick) superzones. Rare agnostoid sclerites in lower Peltura Superzone (Ctenopyge tumida Zone) olenid rudstone resemble those traditionally assigned to Lotagnostus trisectus in Avalonian Britain and Sweden, and are distinct from Laurentian L. americanus. An L. americanus Zone cannot be identified in Avalonia or Baltica, and the first appearance datum (FAD) of purported ‘L. americanus’ is not suitable as a standard for the base of the highest Cambrian stage.

Type
Original Articles
Copyright
Copyright © Cambridge University Press 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ahlberg, P. & Ahlgren, J. 1996. Agnostids from the Upper Cambrian of Vastergötland, Sweden. GFF 118, 129–40.Google Scholar
Ahlberg, P., Månsson, K., Clarkson, E. N. K. & Taylor, C. M. 2006. Faunal turnovers and trilobite morphologies in the Upper Cambrian Leptoplastus Zone at Andarum, southern Sweden. Lethaia 39, 97110.Google Scholar
Ahlberg, P., Szaniawski, H., Clarkson, E. N. K. & Bengtson, S. 2005. Phosphatised olenid trilobites and associated fauna from the Upper Cambrian of Västergötland, Sweden. Acta Palaeontologica Polonica 50, 429–40.Google Scholar
Ahlberg, P. & Terfelt, F. 2012. Furongian agnostoids of Scandinavia and their implications for intercontinental correlation. Geological Magazine 149, 1001–12.CrossRefGoogle Scholar
Ainóczi, B., Horváth, Z., Demény, A. & Mindszenty, A. 2006. Stable isotope geochemistry of calcrete nodules and septarian concretions in a Quaternary red clay vertisol from Hungary. Isotopes and Environmental Health Studies 43, 335–50.Google Scholar
Allen, J. R. L. 1986. Pedogenic calcretes in the Old Red Sandstone facies (Late Silurian–Early Carboniferous) of the Anglo-Welsh area, southern Britain. In Paleosols. Their Recognition and Interpretation (ed. Wright, V. P.), pp. 5886. Princeton University Press, 315 p.Google Scholar
Allen, P. M., Jackson, A. A. & Rushton, A. W. A. 1981. The stratigraphy of the Mawddach Group in the Cambrian succession of North Wales. Proceedings of the Yorkshire Geological Society 43, 295329.Google Scholar
Angelin, N. P. 1854. Pars II. Crustacea formationalis transitionis. Palaeontologica Scandinavica Academiae 2, 2192.Google Scholar
Artyushkov, E. V., Lindström, M. & Popov, L. E. 2000. Relative sea-level changes in Baltoscandia in the Cambrian and Early Ordovician: the predominance of tectonic factor and the absence of large-scale eustatic fluctuations. Tectonophysics 320, 375407.Google Scholar
Atryushkov, E. V., Tesakov, , Chekhovich, Yu. I. 2008. Ordovician sea-level change and rapid change in crustal subsidence rates in East Siberia and Baltoscandia. Russian Geology and Geophysics 49, 633–47.Google Scholar
Bagnoli, G. & Stouge, S. 2014. Upper Furongian (Cambrian) conodonts from the Degerhamn quarry road section, southern Öland, Sweden. GFF, published online 3 January 2014. doi: http//dx.doi.org/10.1080/11035897.2013.858768.Google Scholar
Bainóczi, B., Horváth, Z., Demény, A. & Mindszenty, A. 2006. Stable isotope geochemistry of calcrete nodules and septarian concretions in a Quaternary red clay vertisol from Hungary. Isotopes and Environmental Health Studies 43, 335–50.CrossRefGoogle Scholar
Baird, G. C. & Brett, C. E. 1986. Erosion on an anaerobic sea floor: significance of reworked pyrite deposits from the Devonian of New York State. Palaeogeography, Palaeoclimatology, Palaeoecology 57, 157–93.Google Scholar
Barr, S. M. & Raeside, R. P. 1989. Tectonostratigraphic regimes in Cape Breton Island, Nova Scotia. Implications for the configuration of the southern Appalachian orogen. Geology 17, 822–5.Google Scholar
Barr, S. M. & White, C. E. 1996. Contrasts in late Precambrian–Early Paleozoic tectonothermal history between Avalon composite terrane sensu strictu and other possible peri-Gondwanan terranes in southern New Brunswick and Cape Breton Island, Canada. In Avalonian and Related Peri-Gondwanan Terranes of the Circum-North Atlantic (eds Nance, R. D. & Thompson, M. D.), pp. 95108. Geological Society of America, Special Paper no. 304.Google Scholar
Barr, S. M., White, C. E. & MacDonald, A. S. 1992. Revision of upper Precambrian–Cambrian stratigraphy, southern Cape Breton Island, Nova Scotia. Geological Survey of Canada, Current Research Part D Paper 92–1D, 21–6.Google Scholar
Barr, S. M., White, C. E., MacDonald, A. S. & Raeside, R. P. 1997. Discussion: U-Pb zircon date from Avalonian Cape Breton Island and geochronologic calibration of the Early Ordovician. Canadian Journal of Earth Sciences 34, 1670–71.Google Scholar
Bathurst, R. G. C. 1975. Carbonate Sediments and Their Diagenesis. Berlin: Elsevier. Developments in Sedimentology no. 12, 658 pp.Google Scholar
Bell, W. C. & Ellinwood, H. L. 1962. Upper Franconian and lower Trempealeauan Cambrian trilobites and brachiopods, central Texas. Journal of Paleontology 36, 385423.Google Scholar
Berg, R. T. 1954. Franconia Formation of Minnesota and Wisconsin. Geological Society of America Bulletin 66, 857–82.Google Scholar
Billings, E. 1860. On some new species of fossils from the limestone at Point Levis opposite Quebec. Canadian Naturalist 5, 301–24.Google Scholar
Bjerrum, C., Bendtsen, J. & Legarth, J. J. F. 2006. Modeling organic carbon burial during sea-level rise with reference to the Cretaceous. Geochemistry, Geophysics, Geosystems 7, Q05008. doi:10.1029/2005GC001032.CrossRefGoogle Scholar
Boeck, C. 1838. Übersicht der bischer in Norwegen defundenen Formen der Trilobiten. In Gaea Norvegica (ed. Keihau, B. M.), pp. 138–45. Oslo: Johan Dahl, Christiana.Google Scholar
Boehner, R. C. 1986. Salt and potash resources in Nova Scotia. Nova Scotia Department of Mines and Energy Bulletin 5, 346 pp.Google Scholar
Bose, P. K. 1983. A reappraisal of the conditions of deposition of the Maentrog Beds (Upper Cambrian) at Porth Cairiad, North Wales. Geological Magazine 120, 7380.Google Scholar
Brewer, R. 1964. Fabric and Mineral Analysis of Soils. New York: Wiley, 470 pp.Google Scholar
Cobianchi, M. & Picotti, V. 2001. Sedimentary and biological response to sea-level and palaeoceanographic changes of a Lower–Middle Jurassic Tethyan platform margin (southern Alps, Italy). Palaeogeography, Palaeoclimatology, Palaeoeology 169, 219–44.CrossRefGoogle Scholar
Crimes, T. P. 1970. A facies analysis of the Cambrian of Wales. Palaeogeography, Palaeoclimatology, Palaeogeography 7, 113–70.Google Scholar
Dallmeyer, R. D., Doig, R., Nance, R. D. & Murphy, J. B. 1990. 40Ar/ 39Ar and U-Pb mineral ages from the Brookville Gneiss and Green Head Group: implications for terrane analysis and evolution of Avalonian “basement” in southern New Brunswick. Atlantic Geology 26, 247–57.Google Scholar
Dalman, J. W. 1827. Om Palæderna eller de så kallade Trilobiterna. Konglishes Vetenskamp Akademie Handlungen 1826, 113–62, 226–94.Google Scholar
Dattilo, B. F., Brett, C. E., Tsujita, C. J. & Fairhurst, R. 2008. Sediment supply versus storm winnowing in the development of muddy and shelly interbeds from the Upper Ordovician of the Cincinnati region, USA. Canadian Journal of Earth Sciences 45, 234365.CrossRefGoogle Scholar
Dworatzek, M. 1987. Sedimentology and petrology of carbonate intercalations in the Upper Cambrian olenid shale facies of southern Sweden. Sveriges Geologiska Undersökning C819, 173.Google Scholar
Ekdale, A. A. & Mason, T. R. 1988. Characteristic trace-fossil associations in oxygen-poor environments. Geology 16, 720–23.Google Scholar
Ergaliev, G. K. 1980. Middle and Upper Cambrian Trilobites of the Lesser Karatau, Alma Alta. Kazakhstan SSSR Academy of Sciences, Kazakhstan SSR Publishing House, Alma-Ata, 211 pp. (in Russian).Google Scholar
Ergaliev, G. K. & Ergaliev, F. 2008. Middle and Upper Cambrian Agnostida of the Askai National Geological Reserve, south Kazakhstan (Kyrshabakty River, Malyi Karatau Range). P.I. Almaty, Gylym, 376 pp. (in Russian).Google Scholar
Esteban, M. & Klappa, C. F. 1983. Subaerial exposure. In Carbonate Depositional Environments (eds Scholle, P. A., Bebout, D. G. & Moore, C. H.), pp. 155. AAGP Memoir 33, 708 pp.Google Scholar
Ettensohn, F. R. & Brett, C. E. 2002. Stratigraphic evidence from the Appalachian Basin for continuation of the Taconian orogeny into Early Silurian time. Physics and Chemistry of the Earth 27, 279–88.Google Scholar
Evamy, B. D. & Shearman, D. J. 1969. Early stages in development of overgrowths on echinoderm fragments in limestones. Sedimentology 5, 211–33.Google Scholar
Farrell, Ú., Briggs, D. E. G. & Gaines, R. R. 2011. Paleoecology of the olenid trilobite Triarthrus: new evidence from Beecher's trilobite bed and other sites of pyritization. Palaios 26, 730–42.Google Scholar
Fischer, A. G. & Arthur, M. A. 1977. Secular variations in the pelagic realm. In Deep-Water Carbonate Environments (eds Cook, H. E. & Enos, P.), pp. 1950. Society of Economic Paleontologists and Mineralogists, Special Publication no. 25.CrossRefGoogle Scholar
Freeman, R. J. & Stitt, J. H. 1996. Upper Cambrian and lowest Ordovician articulate brachiopods from the Arbuckle and Wichita mountains, Oklahoma. Journal of Paleontology 70, 355–72.CrossRefGoogle Scholar
Geyer, G., Elicki, O., Fatka, O. & Żylińska, A. 2008. Cambrian. In The Geology of Central Europe. Volume 1: Precambrian and Palaeozoic (ed. McCann, T.), pp. 155202. Geological Society of London.Google Scholar
Gill, B. C., Lyons, T. W., Young, S. A., Kump, L. R., Knoll, A. H. & Saltzman, M. R. 2011. Geochemical evidence for widespread euxinia in the later Cambrian ocean. Nature 469, 80–3.Google Scholar
Goudie, A. S. 1983. Calcrete. In Chemical Sediments and Geomorphology (eds Goudie, A. S. & Pye, K.), pp. 93131. London: Academic Press.Google Scholar
Grant, R. E. 1965. Faunas and Stratigraphy of the Snowy Range Formation (Upper Cambrian) in Southwestern Montana and Northwestern Wyoming. Geological Society of America, Memoir 96, 171 pp.Google Scholar
Hall, J. & Clarke, J. M. 1892. An Introduction to the Study of the Genera of Palaeozoic Brachiopoda. Part 1. New York State Geological Survey, 367 pp.Google Scholar
Hallam, A. 1992. Phanerozoic Sea-Level Changes. Columbia University Press, Perspectives in Paleobiology and Earth History Series, 266 pp.Google Scholar
Hallam, A. & Bradshaw, M. J. 1979. Bituminous shales and ironstones as indicators of transgressions and regressions. Journal of the Geological Society of London 136, 157–64.Google Scholar
Hay, B. J. & Cisne, J. L. 1988. Deposition of the oxygen deficient Taconic foreland basin, Late Ordovician. In The Trenton Group (Upper Ordovician Series) of Eastern North America (ed. Keith, B. D.), pp. 113–34. American Association of Petroleum Geologists, Studies in Geology no. 29.Google Scholar
Hay, R. L. & Kyser, T. K. 2001. Chemical sedimentology and paleoenvironmental history of Lake Oldovai, a Pliocene lake in northeastern Tanzania. Geological Society of America Bulletin 113, 1505–21.Google Scholar
Hayes, A. O. & Howell, B. F. 1937. Geology of Saint John, New Brunswick. Geological Society of America, Special Papers no. 5, 146 pp.Google Scholar
Henningsmoen, G. 1957. The Trilobite Family Olenidae with Description of Norwegian Material and Remarks on the Olenid and Tremadocian Series. Skrifter utgitt av det Norske Videnskaps-Akademi i Oslo. I. Matematisk-Naturvidenskapelig Klasse 1957, 303 pp.Google Scholar
Henningsmoen, G. 1958. The Upper Cambrian faunas of Norway with descriptions of non-olenid invertebrate fossils. Norsk Geologisk Tidsskrift 38, 180–96.Google Scholar
Hicks, K. S., Compton, J. S., McCracken, S. & Vecsei, A. 1996. 17. Origin of diagenetic carbonate minerals recovered from the New Jersey continental slope. Proceedings of the Ocean Drilling Program, Scientific Results 150, 311–23.Google Scholar
Hints, R., Hade, S., Suesso, A. & Voolman, M. 2014. Depositional framework of the east Baltic Tremadocian black shale revisited. GFF 136 (3), 464–82.Google Scholar
Høyberget, M. & Bruton, D. L. 2012. Revision of the trilobite genus Sphaerophthalmus and relatives from the Furongian (Cambrian) Alum Shale Formation, Oslo Region, Norway. Norwegian Journal of Geology 92, 433–50.Google Scholar
Hutchinson, R. D. 1952. The Stratigraphy and Trilobite Faunas of the Cambrian Sedimentary Rocks of Cape Breton Island, Nova Scotia. Geological Survey of Canada, Memoir 263, 124 pp.Google Scholar
James, N. P. 1972. Holocene and Pleistocene calcareous crust (caliche) profiles: criteria for subaerial exposure. Journal of Sedimentary Petrology 42, 817–36.Google Scholar
Jenkyns, H. C. 1980. Cretaceous anoxic events: from continents to oceans. Journal of the Geological Society of London 137, 171–88.Google Scholar
Jenkyns, H. C. 1985. The early Toaracian and Cenomanian–Turonian anoxic events in Europe. Geologische Rundschau 74, 505–18.Google Scholar
Jenness, S. E. 1963. Terra Nova and Bonavista Map-Areas, Newfoundland (2 D E1/2 ανδ 2Χ). Geological Survey of Canada, Memoir 327, 184 pp.Google Scholar
Kaljo, D., Borovko, N., Heinsalu, H., Khasanovich, K., Mens, K., Popov, L., Sergeyeva, S., Sobolevskaya, R. Yu. & Viira, V. 1986. The Cambrian–Ordovician boundary in the Baltic Lagoda Clint area (north Estonia and Leningrad region), USSR). Proceedings of the Academy of Sciences of the Estonian SSR, Geology 35, 97108.Google Scholar
Keppie, J. D., Nance, R. D., Murphy, J. B. & Dostal, J. 2003. Tethyan, Mediterranean, and Pacific analogues for the Neoproterozoic–Paleozoic birth and development of peri-Gondwana terraces and their transfer to Laurentia and Laurussia. Tectonophysics 365, 195219.Google Scholar
Keppie, J. D. & Smith, P. K. 1978. Age of igneous rocks along the Lennox Passage–St. Peters lineament, southern Cape Breton Island. Nova Scotia Department of Mines, Report 78–2, 15 pp.Google Scholar
Kidwell, S. M. 1991. Condensed deposits in siliciclastic sequences: expected and observed features. Cycles and Events in Stratigraphy (eds Einsele, G., Ricken, W. & Seilacher, A.), pp. 682–95. Berlin: Springer-Verlag.Google Scholar
Lake, P. 1913. A Monograph of the British Cambrian Trilobites. London: Palaeontographical Society, Monograph, part 4, 6588.Google Scholar
Landing, E. 1980. Late Cambrian–Early Ordovician macrofaunas and phosphatic microfaunas, St. John Group, New Brunswick. Journal of Paleontology 54, 752–61.Google Scholar
Landing, E. 1991. Upper Precambrian through Lower Cambrian of Cape Breton Island: Faunas, paleoenvironments, and stratigraphic revision. Journal of Paleontology 6, 570–95.Google Scholar
Landing, E. 1996. Avalon–insular continent by the latest Precambrian. In Avalonian and Related Peri-Gondwanan Terranes of the Circum-North Atlantic (eds Nance, R. D. & Thompson, M.), pp. 2764. Geological Society of America, Special Paper 304.Google Scholar
Landing, E. 1997. Reply: U-Pb date from Avalonian Cape Breton Island and geochronologic calibration of the Early Ordovician. Canadian Journal of Earth Sciences 34, 2130–2.Google Scholar
Landing, E. 2004. Precambrian–Cambrian boundary interval deposition and the marginal platform of the Avalon microcontinent. Journal of Geodynamics 37, 411–35.Google Scholar
Landing, E. 2005. Early Paleozoic Avalon–Gondwana unity: an obituary–response to “Palaeontological evidence bearing on global Ordovician–Silurian continental reconstructions” by R.A. Fortey and L.R.M. Cocks. Earth-Science Reviews 69, 169–75.Google Scholar
Landing, E. 2007. Ediacaran–Ordovician of east Laurentia–geologic setting and controls on deposition along the New York Promontory. In Ediacaran–Ordovician of east Laurentia–S. W. Ford memorial volume (ed. Landing, E.), pp. 524. Albany: New York State Museum Bulletin 510.Google Scholar
Landing, E. 2012. Time-specific black mudstones and global hyperwarming on the Cambrian–Ordovician slope and shelf of the Laurentia palaeocontinent. Palaeogeography, Palaeoclimatology, Palaeoecology 367–368, 256–72.CrossRefGoogle Scholar
Landing, E. 2013 a. The Great American Carbonate Bank in northeast Laurentia: its births, deaths, and linkage to continental slope oxygenation (Early Cambrian–Late Ordovician). In The Great American Carbonate Bank, Essays in Honor of James Lee Wilson (eds Derby, J. R., Fritz, R. D., Longacre, S. A., Morgan, W. A. & Sternbach, C. A.), pp. 451–92. American Association of Petroleum Geologists, Memoir 98.Google Scholar
Landing, E. 2013 b. Extended Abstract: The Great American Carbonate Bank in northeast Laurentia: its births, deaths, and linkage to continental slope oxygenation (Early Cambrian–Late Ordovician). In The Great American Carbonate Bank, Essays in Honor of James Lee Wilson (eds Derby, J. R., Fritz, R. D., Longacre, S. A., Morgan, W. A. & Sternbach, C. A.), pp. 253a–60a. American Association of Petroleum Geologists, Memoir 98.Google Scholar
Landing, E., Benus, A. P. & Whitney, P. R. 1992. Early and early Middle Ordovician continental slope deposition: shale cycles and sandstones in the New York Promontory and Quebec Reentrant region. New York State Museum Bulletin 474, 140.Google Scholar
Landing, E., Bowring, S. A., Fortey, R. A. & Davidek, K. L. 1997. U-Pb zircon date from Avalonian Cape Breton Island and geochronologic calibration of the Early Ordovician. Canadian Journal of Earth Sciences 34, 724–30.Google Scholar
Landing, E. & Fortey, R. A. 2011. Tremadocian (Lower Ordovician) biotas and sea-level changes on the Avalon microcontinent. Journal of Paleontology 85, 680–96.CrossRefGoogle Scholar
Landing, E., Geyer, G. & Bartowski, K. E. 2002. Latest Early Cambrian small shelly fossils, trilobites, and Hatch Hill dysaerobic interval on the east Laurentian continental slope. Journal of Paleontology 76, 285303.Google Scholar
Landing, E., Geyer, G., Brasier, M. D. & Bowring, S. A. 2013. Cambrian Evolutionary Radiation: context, correlations, and chronostratigraphy–overcoming deficiencies of the first appearance datum (FAD) concept. Earth-Science Reviews 123, 133–77.Google Scholar
Landing, E., Reyes Patrucco, S., Andreas, A. L. & Bowser, S. S. 2012. First discovery of Early Palaeozoic Bathysiphon (Foraminifera) – test construction and habitat of a ‘living fossil’. Geological Magazine 149 (6), 1013–22.Google Scholar
Landing, E. & Smith, L. 2012. Global hyperwarming and shallow marine deposition of hydrocarbon source rocks. Geological Society of America, Abstracts with Programs, 44 (7), 125.Google Scholar
Landing, E., Taylor, M. E. & Erdtmann, B.-D. 1978. Correlation of the Cambrian–Ordovician boundary between the Acado-Baltic and North American faunal provinces. Geology 6, 75–8.Google Scholar
Landing, E. & Westrop, S. R. 1998. Revisions in stratigraphic nomenclature of the Cambrian of Avalonian North America and comparisons with Avalonian Britain. In Avalon 1997–The Cambrian Standard. Third International Field Conference of the Cambrian Chronostratigraphy Working Group and IGCP Project 366 (Ecological Aspects of the Cambrian radiation) (eds Landing, E. & Westrop, S. R.), pp. 7687. New York State Museum, Bulletin 492.Google Scholar
Landing, E., Westrop, S. R. & Adrain, J. M. 2011. The Lawsonian Stage – the Eoconodontus notchpeakensis (Miller, 1969) FAD and HERB carbon isotope excursion define a globally correlatable terminal Cambrian stage. Bulletin of Geosciences, Czech Geological Survey 86, 621–40.Google Scholar
Landing, E., Westrop, S. R. & Bowring, S. A. 2013. Reconstructing the Avalonia palaeocontinent in the Cambrian: a 519 Ma caliche in South Wales and transcontinental middle Terreneuvian Epoch sandstones. Geological Magazine 150, 1022–46.CrossRefGoogle Scholar
Leckie, D. A., Singh, C., Goodarzi, F. & Wall, J. H. 1990. Organic-rich, radioactive marine shale: a case study of a shallow-water condensed section, Cretaceous Shaftepha Formation, Alberta, Canada. Journal of Sedimentary Petrology 93, 193208.Google Scholar
Leggett, J. K., McKerrow, W. S., Cocks, L. R. M. & Rickards, R. B. 1981. Periodicity in the Early Palaeozoic marine realm. Journal of the Geological Society of London 138, 167–75.Google Scholar
Lehnert, O., Calner, M., Ahlberg, P. & Harper, D. A. 2012. Multiple palaeokarst horizons in the Lower Palaeozoic of Baltoscandia challenging the dogma of a deep epicontinental sea. Geophysical Research Abstracts 14, 11364.Google Scholar
Linnemann, U., Romer, R. L., Pin, C., Alexandrovski, P., Buła, Z., Geisler, T., Kachlik, V., Kremińska, E., Mazur, S., Motuza, G., Murphy, J. B., Nance, D. D., Pisarevsky, S. A., Schultz, Ulrich, B. J., Wiszniewska, J., Żaba, J. & Zeh, A. 2008. Precambrian. In The Geology of Central Europe. Volume 1: Precambrian and Palaeozoic (ed. McCann, T.), pp. 21101. Geological Society of London.Google Scholar
Love, L. G. 1971. Early diagenetic polyframboidal pyrite, primary and redeposited from the Dendigh Grit Group, Conway, north Wales, UK. Journal of Sedimentary Petrology 41, 1038–44.Google Scholar
Martinsson, A. 1974. The Cambrian of Norden. In Cambrian of the British Isles Norden, and Spitsbergen (ed. Holland, C. H.), pp. 185283. New York: John Wiley & Sons, Lower Palaeozoic Rocks of the World, Volume 2.Google Scholar
Matthew, G. F. 1901. New species of Cambrian fossils from Cape Breton. Bulletin of the Natural History Society of New Brunswick 4, 269–86.Google Scholar
Matthew, G. F. 1903. Report on the Cambrian rocks of Cape Breton. Geological Survey of Canada, Report no. 797, 320 pp.Google Scholar
Miller, J. F. 1969. Conodont faunas and biostratigraphy of the Upper Cambrian and lowest Ordovician, House Range, Utah. Journal of Paleontology 43, 413–39.Google Scholar
Milne Edwards, H. 1840. Histore naturelle des crustacés, comprenant l'anatomie, la physiologie et la classification de ces animaux. III, 285–346 (publisher not cited), Paris.Google Scholar
Nash, D. J. & Smith, R. F. 2003. Properties and development of channel calcretes in a mountain catchment, Tabernas Basin, southeast Spain. Geomorphology 50, 227–50.CrossRefGoogle Scholar
Nielsen, A. T. & Schovsbo, N. M. 2007. Cambrian to basal Ordovician lithostratigraphy in southern Scandinavia. Bulletin of the Geological Society of Denmark 53, 4792.Google Scholar
Nielsen, A. T., Weidner, T., Terfelt, F. & Høyberget, M. 2014. Upper Cambrian (Furongian) biostratigraphy in Scandinavia revisited: definition of superzones. GFF 136, 193–97.Google Scholar
Peng, S. C. 1992. Upper Cambrian Biostratigraphy and Faunas of Cili-Taoyuan, Northwestern Hunan, China. Australasian Association of Palaeontologists, Memoir 13, 119 pp.Google Scholar
Peng, S. C. & Babcock, L. E. 2005. Two Cambrian agnostoid trilobites, Agnostotes orientalis (Kobayashi, 1935) and Lotagnostus americanus (Billings, 1860): key species for defining global stages of the Cambrian System. Geosciences Journal 9, 107–15.Google Scholar
Peng, S. C., Babcock, L.E., Zhu, X., Zuo, J. & Dai, T. 2013. A potential GSSP for the base of the uppermost Cambrian stage, coinciding with the first appearance of Lotagnostus americanus at Wa'ergang, Hunan, China. GFF 136, 208–13.Google Scholar
Potter, P. E., Maynard, J. B. & Pryor, W. A. 1980. Sedimentology of Shale. New York: Springer-Verlag, 310 pp.Google Scholar
Pukkonnen, E. & Rammo, M. 1992. Distribution of molybdenum and uranium in the Tremadoc Graptolite Argillite (Dictyonema Shale) of north-western Estonia. Bulletin of the Geological Survey of Estonia 2, 315.Google Scholar
Rushton, A. W. A. 1974. The Cambrian of Wales and England. In Cambrian of the British Isles Norden, and Spitsbergen (ed. Holland, C. H.), pp. 43121. New York: John Wiley & Sons, Lower Palaeozoic Rocks of the World, Volume 2, 300 pp.Google Scholar
Rushton, A. W. A. 2009. Revision of the Furongian agnostoid Lotagnostus trisectus (Salter). Memoirs of the Association of Australasian Palaeontologists 37, 273–9.Google Scholar
Rushton, A. W. A., Brück, P. M., Molyneux, S. G., Williams, M. & Woodcock, N. H. 2011. A revised correlation of the Cambrian rocks in the British Isles. Geological Society of London, Special Report 25, 1–61.Google Scholar
Rushton, A. W. A. & Weidner, T. 2010. The Furongian trilobite Irvingella from Jämtland and Ångermanland, Sweden. GFF 132, 193200.Google Scholar
Sageman, B. B., Wignall, P. B. & Kauffman, E. G. 1991. Biofacies models for oxygen-deficient facies in epicontinental seas: tool for paleoenvironmental analysis. In Cycles and Environments in Stratigraphy (eds Einsele, G., Ricken, W. & Seilacher, A.), pp. 3059. New York: Springer-Verlag.Google Scholar
Salter, J. W. 1864. Figures and descriptions illustrative of British organic remains. Decade 11, Trilobites (chiefly Silurian). Memoirs of the Geological Survey of the United Kingdom, pp. 164.Google Scholar
Sars, G. O. 1872. Undersøgelser ofver Hardangerfjordens Fauna. Videnskaps-Selske Christiana, Förhandlingar 1871, 246–55.Google Scholar
Schieber, J. 1994. Evidence for episodic high energy events and shallow water deposition in the Chattanooga Shale, Devonian, central Tennessee, USA. Sedimentary Geology 93, 193208.Google Scholar
Schlesinger, W. H., Marion, G. M. & Fontey, B. 1989. Stable isotopes ratios and the dynamics of caliche in desert soils. Ecological Studies 68, 309–17.Google Scholar
Schovsbo, N. H. 2001. Why barren intervals? A taphonomic case study of the Scandinavian Alum Shale and its faunas. Lethaia 34, 271–85.Google Scholar
Sedov, S., Solleiro-Rebolledo, E., Fedick, S. D., Pi pulg, T. P., Vallejo-Gómez, E., de & Lourdes Flores-Delgadillo, M. 2008. Micromorphology of a soil catena in Yucatán: pedogenesis and geomorphological processes in a tropical and karst landscape. In New Trends in Soil Micromorphology (ed. Kapur, S.), pp. 1937. Berlin: Springer-Verlag.Google Scholar
Seilacher, A. 1982. Ammonite shells as habitats in the Posidonia Shales of Holzmaden – floats or benthic islands. Neues Jahrbuch für Geologie und Paläontologie Monatschrift, 1982, 34–9.Google Scholar
Simpson, P. R. & Bowles, J. F. W. 1977. Uranium mineralization of Witwatersrand and Dominion reef systems. Philosophical Transactions of the Royal Society of London, Part A 286, 527–47.Google Scholar
Sternberg, K. M. 1833. Versuch einer Geognostisch-botanischen Darstellung der Flora den Vorwelt. Publisher not noted, pp. 5, 6, Leipzig and Prague, 80 pp.Google Scholar
Taylor, K. & Rushton, A. W. A. 1972. The pre-Westphalian geology of the Warwickshire Coalfield with a description of three boreholes in the Merevale area. Bulletin of the Geological Survey of Great Britain 35, 1150.Google Scholar
Terfelt, F. 2003. Upper Cambrian trilobite biostratigraphy and taphonomy at Kakeled on Kinnekulle, Västergötland, Sweden. Acta Palaeontologica Polonica 48, 409–16.Google Scholar
Terfelt, F. & Ahlberg, P. 2010. Pseudagnostus rugosus Ergaliev, 1980: a key agnostoid species for intercontinental correlation of upper Furongian strata. Geological Magazine 147, 789–96.Google Scholar
Terfelt, F., Ahlberg, A. & Eriksson, M. E. 2011. Complete record of Furongian trilobites and agnostoids of Scandinavia – a biostratigraphical scheme. Lethaia 44, 814.Google Scholar
Terfelt, F., Eriksson, M. E. & Schmitz, B. 2014. The Cambrian–Ordovician transition in dysoxic facies in Baltica – diverse faunas and carbon isotope anomalies. Palaeogeography, Palaeoclimatology, Palaeoecology 394, 5973.Google Scholar
Thickpenny, A. 1984. The sedimentology of the Swedish Alum Shales. In Fine Grained Sediments, Deep Water Processes (eds Stow, D. O. W. & Piper, D. J. W.), pp. 511–26. Oxford: Blackwell.Google Scholar
Thickpenny, A. & Leggett, J. K. 1987. Stratigraphic distribution and paleo-oceanographic significance of the European Early Paleozoic organic-rich sediments. In Marine Petroleum Source Rocks (eds Brooks, J. & Fleet, A. J.), pp. 231–47. Geological Society of London, Special Publication no. 26.Google Scholar
van de Poll, H. W., Gibling, M. R. & Hyde, R. S. 1995. Upper Paleozoic rocks. In Geology of the Appalachian-Caledonian Orogen in Canada and Greenland (ed. Williams, H.), pp. 449566. Geological Survey of Canada, Geology of Canada no. 6.Google Scholar
van Wagoner, J. C., Posamentier, H. W., Mitchum, R. M., Vail, P. R., Sarg, J. F., Louit, T. S. & Hardenbol, J. 1988. An overview of the fundamentals of sequence stratigraphy and key definitions. In Sea-level Changes: an Integrated Approach (eds Wilgus, C. K., Posamentier, H., Ross, C. A. & Kendall, C. G. St. C.), pp. 3945. Society of Economic Paleontologists and Mineralogists, Special Publication no. 42.Google Scholar
Wahlenberg, G. 1821. Petrificata telluris Svecanæ. Nova Acta Regiæ de Societe Sciencia Upsaliensis 8, 235 pp.Google Scholar
Walcott, C. D. 1908. Cambrian geology and paleontology. 3. Cambrian Brachiopoda; Descriptions of new genera and species. 4. Classification and terminology of the Cambrian Brachiopoda. Smithsonian Miscellaneous Collection 53 (3), 5366.Google Scholar
Walcott, C. D. 1912. Cambrian Brachiopoda. US Geological Survey, Monograph no. 10, 1235 pp.Google Scholar
Wallerius, I. D. 1895. Undersökningar öfver zonen med Agnostus laevigatus i Vestergötland. Publisher not named, Lund, 72 pp.Google Scholar
Watts, N. L. 1978. Displacive calcite: evidence from Recent and ancient calcretes. Geology 6, 699703.Google Scholar
Westergård, A. H. 1922. Sveriges olenidskiffer. Sveriges Geologiska Undersökning 18, 1205.Google Scholar
Westergård, A. H. 1944. Borrningar genom Skånes Alunskiffer 1941–1942. Sveriges Geologiska Ungersökning, Series 3 459, 45 pp.Google Scholar
Westrop, S. R. 1996. Temporal persistence and stability of Cambrian biofacies: Sunwaptan (Upper Cambrian) trilobite faunas of North America. Palaeogeography, Palaeoclimatology, Palaeoecology 127, 3346.Google Scholar
Westrop, S. R. & Adrain, J. 2013. Biogeographic shifts in a transgressive succession: the Cambrian (Furongian, Jiangshanian, latest Steptoean – earliest Sunwaptan) agnostoid arthropods Kormagnostella Romanenko and Biciagnostus Ergaliev in North America. Journal of Paleontology 87, 804–16.Google Scholar
Westrop, S. R., Adrain, J. M. & Landing, E. 2011. The Cambrian (Sunwaptan, Furongian) agnostoid arthropod Lotagnostus Whitehouse, 1936, in Laurentian and Avalonian North America: systematics and biostratigraphic significance. Bulletin of Geosciences, Czech Geological Survey 86, 569–94.Google Scholar
Westrop, S. R. & Cuggy, M. B. 1999. Comparative paleoecology of Cambrian trilobite extinctions. Journal of Paleontology 73, 337–54.Google Scholar
Whitehouse, F. W. 1936. The Cambrian faunas of northeastern Australia. Parts 1 and 2. Memoirs of the Queensland Museum 11, 59112.Google Scholar
Wignall, P. B. & Newton, R. 2001. Black shale on the basin margin: a model based on examples from the Upper Jurassic of the Boulonnais, northern France. Sedimentary Geology 144, 335–56.CrossRefGoogle Scholar
Williams, H. & Hatcher, R. D. 1982. Suspect terranes and accretionary history of the Appalachian orogen. Geology 10, 530–6.Google Scholar
Winston, D. & Nicholls, H. 1967. Late Cambrian and Early Ordovician faunas from the Wilberns Formation of central Texas. Journal of Paleontology 41, 6696.Google Scholar
Young, T., Martin, F., Dean, W. T. & Rushton, A. W. A. 1994. Cambrian stratigraphy of St Tudwal's Peninsula, Gwynedd, northwest Wales. Geological Magazine 131, 335–50.Google Scholar
Zecchin, M. 2007. The architectural variability of small-scale cycles in shelf and ramp clastic systems: the controlling factors. Earth Science Reviews 84, 2155.Google Scholar
Zecchin, M. & Catuneanu, O. 2013. High resolution sequence stratigraphy of clastic shelves. I: units and bounding surfaces. Marine and Petroleum Geology 39, 125.Google Scholar