Hostname: page-component-7c8c6479df-24hb2 Total loading time: 0 Render date: 2024-03-28T06:47:21.679Z Has data issue: false hasContentIssue false

Contact and fumigant toxicity of five pesticidal plants against Callosobruchus maculatus (Coleoptera: Chrysomelidae) in stored cowpea (Vigna unguiculata)

Published online by Cambridge University Press:  08 September 2015

Prisila A. Mkenda
Affiliation:
Department of Biological Sciences, Sokoine University of Agriculture, Morogoro, Tanzania
Philip C. Stevenson
Affiliation:
Natural Resources Institute, University of Greenwich, Chatham Maritime, KentME4 4TB, United Kingdom Jodrell Laboratory, Royal Botanic Gardens, Kew, Richmond, SurreyTW9 3AB, United Kingdom
Patrick Ndakidemi*
Affiliation:
School of Life Sciences and Engineering, The Nelson Mandela African Institution of Science and Technology, Arusha, Tanzania
Dudley I. Farman
Affiliation:
Natural Resources Institute, University of Greenwich, Chatham Maritime, KentME4 4TB, United Kingdom
Steven R. Belmain
Affiliation:
Natural Resources Institute, University of Greenwich, Chatham Maritime, KentME4 4TB, United Kingdom
Get access

Abstract

Insecticidal activities of five pesticidal plant species, Tephrosia vogelii, Dysphania (Syn: Chenopodium) ambrosioides, Lippia javanica, Tithonia diversifolia and Vernonia amygdalina, which have been reported to control storage pests, were evaluated as leaf powders against Callosobruchus maculatus (Fabricius 1775) in stored cowpea. Their efficacy was compared with the commercial pesticide Actellic dust (pirimiphos-methyl) at the recommended concentration (50 g/90 kg), and with untreated cowpea seeds as a negative control. The plant powders were applied at concentrations of 0.01, 0.1, 1 and 3 g/10 g of cowpea seeds in 250 ml plastic containers (to measure contact toxicity), or 0.005, 0.05, 0.5 and 5 g tied in small muslin cloth bags and hung in 500 ml plastic bottles containing 10 g of cowpea seeds (to measure fumigant toxicity). Mortality of adults, oviposition deterrence, adult emergence, and percent seed damage were recorded. Complete protection of seeds and inhibition of adult emergence were achieved in Actellic dust-treated seeds; contact toxicity using leaf powders of T. vogelii at all concentrations, D. ambrosioides at concentrations of 0.1, 1 and 3 g and L. javanica at concentrations of 1 and 3 g; and fumigant toxicity using D. ambrosioides at concentrations of 0.5 and 5 g and L. javanica at a concentration of 5 g. Head space analysis of D. ambrosioides and L. javanica identified ascaridole and camphor, respectively, as components that could be responsible for the bioactivity of these plant species. These plants may, therefore, serve as effective but less harmful biopesticide alternatives to Actellic. Conversely, V. amygdalina and T. diversifolia were not effective, indicating that they should not be promoted for controlling bruchids in cowpea.

Type
Research Papers
Copyright
Copyright © ICIPE 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Adedire, C. O. and Akkineye, J. O. (2004) Biological activity of tree marigold, Tithonia diversifolia, on cowpea seed bruchid, Callosobruchus maculatus (Coleoptera: Bruchidae). Annals of Applied Biology 144, 185189.Google Scholar
Adedire, C. O., Obembe, O. M., Akinkurolere, R. O. and Oduleye, S. O. (2011) Response of Callosobruchus maculatus (Coleoptera: Chrysomelidae: Bruchinae) to extracts of cashew kernels. Journal of Plant Diseases and Protection 118, 7579.Google Scholar
Adeniyi, S., Orjiekwe, C., Ehiagbonare, J. and Arimah, B. (2010) Preliminary phytochemical analysis and insecticidal activity of ethanolic extracts of four tropical plants (Vernonia amygdalina, Sida acuta, Ocimum gratissimum and Telfaria occidentalis) against the bean weevil (Acanthscelides obtectus). International Journal of Physical Sciences 5, 753762.Google Scholar
Anibijuwon, I., Oladejo, B., Adetitun, D. and Kolawole, O. (2012) Antimicrobial activities of Vernonia amygdalina against oral microbes. Global Journal of Pharmacology 6, 178185.Google Scholar
Arannilewa, S., Ekrakene, T. and Akinneye, J. (2006) Laboratory evaluation of four medicinal plants as protectants against the maize weevil, Sitophilus zeamais (Mots). African Journal of Biotechnology 5, 20322036.Google Scholar
Belmain, S. R., Amoah, B. A., Nyirenda, S. P., Kamanula, J. F. and Stevenson, P. C. (2012) Highly variable insect control efficacy of Tephrosia vogelii chemotypes. Journal of Agricultural and Food Chemistry 60, 1005510063.Google Scholar
Bernard, L. K., David, S. K., Mark, N. O., Charles, M. K., Geoffrey, R. M., Charles, M., Laban, I. and Willy, T. K. (2012) Larvicidal action of extracts from Tithonia diversifolia against the dengue mosquito Aedes aegypti (Diptera: Culicidae). Journal of Biologically Active Products from Nature 2, 4649.Google Scholar
Bossou, A. D., Mangelinckx, S., Yedomonhan, H., Boko, P. M., Akogbeto, M. C., De Kimpe, N., Avlessi, F. and Sohounhloue, D. C. (2013) Chemical composition and insecticidal activity of plant essential oils from Benin against Anopheles gambiae (Giles). Parasite Vectors 6, 117.CrossRefGoogle ScholarPubMed
Brisibe, E. A., Adugbo, S. E., Ekanem, U., Brisibe, F. and Figueira, G. M. (2011) Controlling bruchid pests of stored cowpea seeds with dried leaves of Artemisia annua and two other common botanicals. African Journal of Biotechnology 10, 95869592.Google Scholar
Chiasson, H., Vincent, C. and Bostanian, N. (2004) Insecticidal properties of a Chenopodium-based botanical. Journal of Economic Entomology 97, 13781383.Google Scholar
Chu, S. S., Feng Hu, J. and Liu, Z. L. (2011) Composition of essential oil of Chinese Chenopodium ambrosioides and insecticidal activity against maize weevil, Sitophilus zeamais. Pest Management Science 67, 714718.Google Scholar
Dembitsky, V., Shkrob, I. and Hanus, L. O. (2008) Ascaridole and related peroxides from the genus Chenopodium. Biomedical Papers of the Medical Faculty of Palacky University in Olomouc 152, 209215.Google Scholar
De Sousa, A. H., Maracajá, P. B., da Silva, R., de Moura, A. and de Andrade, W. G. (2005) Bioactivity of vegetal powders against Callosobruchus maculatus (Coleoptera: Bruchidae) in cowpea bean and seed physiological analysis. Revista de Biologia e Ciências da Terra 5, 96103.Google Scholar
Denloye, A., Makanjuola, W., Teslim, O., Alafia, O., Kasali, A. and Eshilokun, A. (2010) Toxicity of Chenopodium ambrosioides L. (Chenopodiaceae) products from Nigeria against three storage insects. Journal of Plant Protection Research 50, 379384.Google Scholar
Fatope, M., Nuhu, A., Mann, A. and Takeda, Y. (1995) Cowpea weevil bioassay: a simple pre-screen for plants with grain protectant effects. International Journal of Pest Management 41, 8486.Google Scholar
García, A. and Delgado, G. (2006) Constituents from Tithonia diversifolia. Stereochemical revision of 2α-hydroxytirotundin. Journal of the Mexican Chemical Society 50, 180183.Google Scholar
Grzywacz, D., Stevenson, P. C., Belmain, S. R. and Wilson, K. (2014) The use of indigenous ecological resources for pest control in Africa. Food Security 6, 7186.Google Scholar
Ileke, K. and Olotuah, O. (2012) Bioactivity of Anacardium occidentale (L) and Allium sativum (L) powders and oils extracts against cowpea bruchid, Callosobruchus maculatus (Fab.) (Coleoptera: Chrysomelidae). International Journal of Biology 4, 96103.Google Scholar
Ileke, K. D., Bulus, D. S. and Aladegoroye, A. Y. (2013) Effects of three medicinal plant products on survival, oviposition and progeny development of cowpea bruchid, Callosobruchus maculatus (Fab.) (Coleoptera: Chrysomelidae) infesting cowpea seeds in storage. Jordan Journal of Biological Science 6, 6166.Google Scholar
Isman, M. B. (2006) Botanical insecticides, deterrents, and repellents in modern agriculture and an increasingly regulated world. Annual Review of Entomology 51, 4566.Google Scholar
Jardim, C. M., Jham, G. N., Dhingra, O. D. and Freire, M. M. (2008) Composition and antifungal activity of the essential oil of the Brazilian Chenopodium ambrosioides L. Journal of Chemical Ecology 34, 12131218.Google Scholar
Jamali, A., Kouhila, M., Ait Mohamed, L., Jaouhari, J., Idlimam, A. and Abdenouri, N. (2006) Sorption isotherms of Chenopodium ambrosioides leaves at three temperatures. Journal of Food Engineering 72, 7784.Google Scholar
Kamanula, J., Sileshi, G. W., Belmain, S. R., Sola, P., Mvumi, B. M., Nyirenda, G. K. and Stevenson, P. C. (2010) Farmers' insect pest management practices and pesticidal plant use in the protection of stored maize and beans in Southern Africa. International Journal of Pest Management 57, 4149.Google Scholar
Khalafalla, M. M., Abdellatef, E., Daffalla, H. M., Nassrallah, A. A., Aboul-Enein, K. M., Lightfoot, D. A. and El-Semy, H. A. (2009) Antileukemia activity from root cultures of Vernonia amygdalina. Journal of Medicinal Plants Research 3, 556562.Google Scholar
Kuroda, M., Yokosuka, A., Kobayashi, R., Jitsuno, M., Kando, H., Nosaka, K., Ishii, H., Yamori, T. and Mimaki, Y. (2007) Sesquiterpenoids and flavonoids from the aerial parts of Tithonia diversifolia and their cytotoxic activity. Chemical and Pharmaceutical Bulletin 55, 12401244.CrossRefGoogle ScholarPubMed
Lale, N. (2001) The impact of storage insect pests on post-harvest losses and their management in the Nigerian agricultural system. Nigerian Journal of Experimental and Applied Biology 2, 231239.Google Scholar
Lale, N. and Kabeh, J. (2004) Pre-harvest spray of neem (Azadirachta indica A. Juss) seed products and pirimiphos-methyl as a method of reducing field infestation of cowpeas by storage bruchids in the Nigerian Sudan savannah. International Journal of Agriculture and Biology 6, 987993.Google Scholar
Lans, C., Turner, N., Brauer, G., Lourenco, G. and Georges, K. (2006) Ethnoveterinary medicines used for horses in Trinidad and in British Columbia, Canada. Journal of Ethnobiology and Ethnomedicine 2, 120.Google Scholar
Lina, E. C., Manuwoto, S., Syahbirin, G. and Prijono, D. (2013) Synergistic action of mixed extracts of Brucea javanica (Simaroubaceae), Piper aduncum (Piperaceae), and Tephrosia vogelii (Leguminosae) against cabbage head caterpillar Crocidolomia pavonana. Journal of Biopesticides 6, 7783.Google Scholar
Lukwa, N., Molgaard, P., Furu, P. and Bogh, C. (2009) Lippia javanica (Burm F) Spreng: its general constituents and bioactivity on mosquitoes. Tropical Biomedicine 26, 8591.Google Scholar
Muzemu, S., Mvumi, B., Nyirenda, S., Sileshi, G., Sola, P., Chikukura, L., Kamanula, J., Belmain, S. and Stevenson, P. (2011) Pesticidal effects of indigenous plants extracts against rape aphids and tomato red spider mites. African Crop Science Conference Proceedings 10, 169171.Google Scholar
Myaka, F., Kabissa, J., Myaka, D. and Mligo, J. (2002) Farmer participatory evaluation of newly developed components of cowpea and cotton intercropping technology, challenges and opportunities for enhancing sustainable cowpea production, pp. 329337. In Proceedings of the World Cowpea Conference III held at the International Institute of Tropical Agriculture (IITA), Ibadan, Nigeria.Google Scholar
Nascimento, F. R., Cruz, G. V., Pereira, P. V. S., Maciel, M. C., Silva, L. A., Azevedo, A. P. S. and Guerra, R. N. (2006) Ascitic and solid ehrlich tumor inhibition by Chenopodium ambrosioides L. treatment. Life Sciences 78, 26502653.Google Scholar
Obafemi, C., Sulaimon, T., Akinpelu, D. and Olugbade, T. (2006) Antimicrobial activity of extracts and a germacranolidetype sesquiterpene lactone from Tithonia diversifolia leaf extract. African Journal of Biotechnology 5, 12541258.Google Scholar
Odeyemi, O., Gbaye, O. and Akeju, O. (2006) Resistance of Callosobruchus maculatus (Fab.) to pirimiphos methyl in three zones in Nigeria, pp. 1518. In Proceedings of the 9th International Working Conference on Stored-Product Protection. Campinas, Sao Paulo, Brazil.Google Scholar
Ojiako, F. O. and Adesiyun, A. A. (2013) Assessment of the curative potency of some plant materials on cowpea seeds with established infestation of Callosobruchus maculatus (Fabricius) (Coleoptera: Chrysomelidae: Bruchinae). Journal of Biology, Agriculture and Healthcare 3, 8393.Google Scholar
Oparaeke, A., Dike, M. and Amatobi, C. (2006) Botanical pesticide mixtures for insect pest management on cowpea, Vigna unguiculata (L.) Walp plants – the legume flower bud thrips, Megalurothrips sjostedti Trybom. Journal of Sustainable Agriculture 29, 513.Google Scholar
Oyedokun, A., Anikwe, J., Okelana, F., Mokwunye, I. and Azeez, O. (2011) Pesticidal efficacy of three tropical herbal plants' leaf extracts against Macrotermes bellicosus, an emerging pest of cocoa, Theobroma cacao L. Journal of Biopesticides 4, 131137.Google Scholar
Pereira, W. S., Ribeiro, B. P., Sousa, A. I., Serra, I. C., Mattar, N. S., Fortes, T. S. and Nascimento, F. R. (2010) Evaluation of the subchronic toxicity of oral treatment with Chenopodium ambrosioides in mice. Journal of Ethnopharmacology 127, 602605.Google Scholar
Prakash, A., Rao, J. and Nandagopal, V. (2008) Future of botanical pesticides in rice, wheat, pulses and vegetables pest management. Journal of Biopesticides 1, 154169.Google Scholar
Schafer, K. S. and Kegley, S. (2002) Persistent toxic chemicals in the US food supply. Journal of Epidemiology and Community Health 56, 813817.Google Scholar
Samie, A., Tambani, T., Harshfield, E., Green, E., Ramalivhana, J. and Bessong, P. (2010) Antifungal activities of selected venda medicinal plants against Candida albicans, Candida krusei and Cryptococcus neoformans isolated from South African AIDS patients. African Journal of Biotechnology 9, 29652976.Google Scholar
Shikanga, E., Regnier, T., Combrinck, S. and Botha, B. (2009) Polar Lippia extracts as alternatives for the postharvest control of Guazatine®-resistant strains of Penicillium digitatum in citrus. Fruits 64, 7582.CrossRefGoogle Scholar
Silva, G., Lagunes, A. and Rodríguez, J. (2003) Control of Sitophilus zeamais (Coleoptera: Curculionidae) with vegetable powders used singly and mixed with calcium carbonate in stored corn. Ciencia e Investigación Agraria 30, 153160.Google Scholar
Stevenson, P. C., Kite, G. C., Lewis, G. P., Forest, F., Nyirenda, S. P., Belmain, S. R., Sileshi, G. W. and Veitch, N. C. (2012) Distinct chemotypes of Tephrosia vogelii and implications for their use in pest control and soil enrichment. Phytochemistry 78, 135146.Google Scholar
Suthisut, D., Fields, P. G. and Chandrapatya, A. (2011) Contact toxicity, feeding reduction, and repellency of essential oils from three plants from the ginger family (Zingiberaceae) and their major components against Sitophilus zeamais and Tribolium castaneum. Journal of Economic Entomology 104, 14451454.Google Scholar
Swella, G. and Mushobozy, D. (2007) Evaluation of the efficacy of protectants against cowpea bruchids (Callosobruchus maculatus (F.)) on cowpea seeds (Vigna unguiculata (L.) Walp.). Plant Protection Science-UZPI 43, 6872.Google Scholar
Talukder, F., Islam, M., Hossain, M., Rahman, M. and Alam, M. (2004) Toxicity effects of botanicals and synthetic insecticides on Tribolium castaneum (Herbst) and Rhyzopertha dominica (F.). Bangladesh Journal of Environmental Science 10, 365371.Google Scholar
Tapondjou, L., Adler, C., Bouda, H. and Fontem, D. (2002) Efficacy of powder and essential oil from Chenopodium ambrosioides leaves as post-harvest grain protectants against six-stored product beetles. Journal of Stored Products Research 38, 395402.Google Scholar
Viljoen, A. M., Subramoney, S., van Vuuren, S. F., Başer, K. H. C. and Demircia, B. (2004) The composition, geographical variation and antimicrobial activity of Lippia javanica (Verbenaceae) leaf essential oils. Journal of Ethnopharmacology 96, 271277.Google Scholar
Zhu, W. X., Zhao, K., Chu, S. S. and Liu, Z. L. (2012) Evaluation of essential oil and its three main active ingredients of Chinese Chenopodium ambrosioides (Family: Chenopodiaceae) against Blattella germanica. Journal of Arthropod-Borne Diseases 6, 9097.Google Scholar