Hostname: page-component-7c8c6479df-nwzlb Total loading time: 0 Render date: 2024-03-19T02:02:35.671Z Has data issue: false hasContentIssue false

When excitons and plasmons meet: Emerging function through synthesis and assembly

Published online by Cambridge University Press:  04 September 2015

Jennifer A. Hollingsworth
Affiliation:
Materials Physics and Applications Division, Center for Integrated Nanotechnologies, Los Alamos National Laboratory, USA; jenn@lanl.gov
Han Htoon
Affiliation:
Materials Physics and Applications Division, Center for Integrated Nanotechnologies, Los Alamos National Laboratory, USA; htoon@lanl.gov
Andrei Piryatinski
Affiliation:
Theoretical Division, Physics of Condensed Matter and Complex Systems, Los Alamos National Laboratory, USA; apiryat@lanl.gov
Stephan Götzinger
Affiliation:
Department of Physics, Friedrich-Alexander-Universität Erlangen-Nürnberg, and Max Planck Institute for the Science of Light, Germany; stephan.goetzinger@mpl.mpg.de
Vahid Sandoghdar
Affiliation:
Max Planck Institute for the Science of Light, and Friedrich-Alexander-Universität Erlangen-Nürnberg, Germany; vahid.sandoghdar@mpl.mpg.de
Get access

Abstract

To meet the challenge of precise nanoscale arrangement of emitter and plasmonic nanoantenna, synthesis and assembly methods continue to evolve in accuracy and reproducibility. This article reviews some of the many strategies being developed for “soft” chemical approaches to precision integration and assembly. We also discuss investigations of the Purcell effect, emission directionality control, and near-unity collection efficiency of photons, emitteremitter coupling, and higher-order emission processes that have been most deeply explored using individual-emitter (or several-emitter) nanoantenna pairs fabricated using traditional lithographic methods or dynamically and controllably manipulated using scanning probe methods. Importantly, these results along with theoretical analyses inspire and motivate continued advancements in large-scale synthesis and assembly. We emphasize assembly approaches that have been used to create nanosemiconductor–nanometal hybrids and, in particular, those that have afforded specific plasmonic effects on excitonic properties. We also review direct-synthesis and chemical-linker strategies to creating discrete, though less spatially extended, semiconductor–metal interactions.

Type
Research Article
Copyright
Copyright © Materials Research Society 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Vahala, K.J., Nature 424, 839 (2003).Google Scholar
Press, D., Götzinger, S., Reitzenstein, S., Hofmann, C., Löffler, A., Kamp, M., Forchel, A., Yamamoto, Y., Phys. Rev. Lett. 98, 117402 (2007).Google Scholar
Gerard, J.-M., Gayral, B., J. Lightwave Technol. 17, 2089 (1999).Google Scholar
Hennessy, K., Badolato, A., Tamboli, A., Petroff, P.M., Hu, E., Atatüre, M., Dreiser, J., Imamoglu, A., Appl. Phys. Lett. 87, 021108 (2005).Google Scholar
Sandoghdar, V., Agio, M., Chen, X.-W., Götzinger, S., Lee, K.-G., in Optical Antennas, Agio, M., Alu, A., Eds. (Cambridge University Press, Cambridge, UK, 2013).Google Scholar
Grzelczak, M., Vermant, J., Furst, E.M., Liz-Marzan, L.M., ACS Nano 4, 3591 (2010).CrossRefGoogle Scholar
Li, F., Josephson, D.P., Stein, A., Angew. Chem. Int. Ed. 50, 360 (2011).Google Scholar
Nie, Z., Petukhova, A., Kumacheva, E., Nat. Nanotechnol. 5, 15 (2010).CrossRefGoogle Scholar
Vogel, N., Retsch, M., Fustin, C.A., del Campo, A., Jonas, U., Chem. Rev. 115, 6265 (2015).Google Scholar
Wang, L., Xu, L., Kuang, H., Xu, C., Kotov, N.A., Acc. Chem. Res. 45, 1916 (2012).Google Scholar
Banin, U., Ben-Shahar, Y., Vinokurov, K., Chem. Mater. 26, 97 (2014).Google Scholar
Gacoin, T., Lahlil, K., Larregaray, P., Boilot, J.P., J. Phys. Chem. B 105, 10228 (2001).Google Scholar
Mohanan, J.L., Arachchige, I.U., Brock, S.L., Science 307, 397 (2005).Google Scholar
Arachchige, I.U., Brock, S.L., Acc. Chem. Res. 40, 801 (2007).CrossRefGoogle Scholar
Gaponik, N., Herrmann, A.K., Eychmuller, A., J. Phys. Chem. Lett. 3, 8 (2012).Google Scholar
Bigall, N.C., Herrmann, A.K., Vogel, M., Rose, M., Simon, P., Carrillo-Cabrera, W., Dorfs, D., Kaskel, S., Gaponik, N., Eychmuller, A., Angew. Chem., Int. Ed. 48, 9731 (2009).Google Scholar
Gill, S.K., Hope-Weeks, L.J., Chem. Commun. 29, 4384 (2009).CrossRefGoogle Scholar
Herrmann, A.K., Formanek, P., Borchardt, L., Klose, M., Giebeler, L., Eckert, J., Kaskel, S., Gaponik, N., Eychmuller, A., Chem. Mater. 26, 1074 (2014).Google Scholar
Lesnyak, V., Wolf, A., Dubavik, A., Borchardt, L., Voitekhovich, S.V., Gaponik, N., Kaskel, S., Eychmuller, A., J. Am. Chem. Soc. 133, 13413 (2011).Google Scholar
Sekiguchi, S., Niikura, K., Iyo, N., Matsuo, Y., Eguchi, A., Nakabayashi, T., Ohta, N., Ijiro, K., ACS Appl. Mater. Interfaces 3, 4169 (2011).Google Scholar
Hendel, T., Lesnyak, V., Kuhn, L., Herrmann, A.K., Bigall, N.C., Borchardt, L., Kaskel, S., Gaponik, N., Eychmuller, A., Adv. Funct. Mater. 23, 1903 (2013).Google Scholar
Korala, L., Li, L., Brock, S.L., Chem. Commun. 48, 8523 (2012).Google Scholar
Dong, A., Ye, X., Chen, J., Murray, C.B., Nano Lett. 11, 1804 (2011).Google Scholar
Evers, W.H., Friedrich, H., Filion, L., Dijkstra, M., Vanmaekelbergh, D., Angew. Chem. Int. Ed. 48, 9655 (2009).Google Scholar
Paik, T., Murray, C.B., Nano Lett. 13, 2952 (2013).Google Scholar
Shevchenko, E.V., Talapin, D.V., Murray, C.B., O’Brien, S., J. Am. Chem. Soc. 128, 3620 (2006).Google Scholar
Paik, T., Diroll, B.T., Kagan, C.R., Murray, C.B., J. Am. Chem. Soc. 137, 6662 (2015).Google Scholar
Chen, J., Ye, X.C., Oh, S.J., Kikkawa, J.M., Kagan, C.R., Murray, C.B., ACS Nano 7, 1478 (2013).Google Scholar
Bodnarchuk, M.I., Kovalenko, M.V., Heiss, W., Talapin, D.V., J. Am. Chem. Soc. 132, 11967 (2010).Google Scholar
Chen, J., Dong, A., Cai, J., Ye, X., Kang, Y., Kikkawa, J.M., Murray, C.B., Nano Lett. 10, 5103 (2010).Google Scholar
Dong, A., Chen, J., Ye, X., Kikkawa, J.M., Murray, C.B., J. Am. Chem. Soc. 133, 13296 (2011).Google Scholar
Shevchenko, E.V., Ringler, M., Schwemer, A., Talapin, D.V., Klar, T.A., Rogach, A.L., Feldmann, J., Alivisatos, A.P., J. Am. Chem. Soc. 130, 3274 (2008).Google Scholar
Shevchenko, E.V., Talapin, D.V., Kotov, N.A., O’Brien, S., Murray, C.B., Nature 439, 55 (2006).Google Scholar
Urban, J.J., Talapin, D.V., Shevchenko, E.V., Kagan, C.R., Murray, C.B., Nat. Mater. 6, 115 (2007).CrossRefGoogle Scholar
Zeng, H., Li, J., Liu, J.P., Wang, Z.L., Sun, S., Nature 420, 395 (2002).Google Scholar
Ye, X.C., Chen, J., Diroll, B.T., Murray, C.B., Nano Lett. 13, 1291 (2013).Google Scholar
Kang, Y., Ye, X., Chen, J., Qi, L., Diaz, R.E., Doan-Nguyen, V., Xing, G., Kagan, C.R., Li, J., Gorte, R.J., Stach, E.A., Murray, C.B., J. Am. Chem. Soc. 135, 1499 (2013).Google Scholar
Tripathi, L.N., Praveena, M., Basu, J.K., Plasmonics 8, 657 (2013).Google Scholar
Kim, K.S., Kim, J.H., Kim, H., Laquai, F., Arifin, E., Lee, J.K., Yoo, S.I., Sohn, B.H., ACS Nano 6, 5051 (2012).Google Scholar
Zhang, X., Marocico, C.A., Lunz, M., Gerard, V.A., Gun’ko, Y.K., Lesnyak, V., Gaponik, N., Susha, A.S., Rogach, A.L., Bradley, A.L., ACS Nano 8, 1273 (2014).Google Scholar
Guardia, P., Korobchevskaya, K., Casu, A., Genovese, A., Manna, L., Comin, A., ACS Nano 7, 1045 (2013).Google Scholar
Zhang, J.T., Tang, Y., Lee, K., Ouyang, M., Nature 466, 91 (2010).Google Scholar
Costi, R., Cohen, G., Salant, A., Rabani, E., Banin, U., Nano Lett. 9, 2031 (2009).Google Scholar
Mokari, T., Rothenberg, E., Popov, I., Costi, R., Banin, U., Science 304, 1787 (2004).Google Scholar
Mishra, N., Lian, J., Chakrabortty, S., Lin, M., Chan, Y.T., Chem. Mater. 24, 2040 (2012).CrossRefGoogle Scholar
Saunders, A.E., Popov, I., Banin, U., J. Phys. Chem. B 110, 25421 (2006).Google Scholar
Pacholski, C., Kornowski, A., Weller, H., Angew. Chem. Int. Ed. 43, 4774 (2004).Google Scholar
Liu, N.G., Prall, B.S., Klimov, V.I., J. Am. Chem. Soc. 128, 15362 (2006).Google Scholar
Naiki, H., Masuhara, A., Masuo, S., Onodera, T., Kasai, H., Oikawa, H., J. Phys. Chem. C 117, 2455 (2013).Google Scholar
Tang, L.J., Xu, J.Y., Guo, P.F., Zhuang, X.J., Tian, Y., Wang, Y.C., Duan, H.G., Pan, A.L., Opt. Express 21, 11095 (2013).Google Scholar
Liz-Marzan, L.M., Giersig, M., Mulvaney, P., Langmuir 12, 4329 (1996).Google Scholar
Lee, J., Govorov, A.O., Kotov, N.A., Angew. Chem. Int. Ed. 44, 7439 (2005).Google Scholar
Gueroui, Z., Libchaber, A., Phys. Rev. Lett. 93, 166108 (2004).Google Scholar
Pons, T., Medintz, I.L., Sapsford, K.E., Higashiya, S., Grimes, A.F., English, D.S., Mattoussi, H., Nano Lett. 7, 3157 (2007).Google Scholar
Li, M., Cushing, S.K., Wang, Q.Y., Shi, X.D., Hornak, L.A., Hong, Z.L., Wu, N.Q., J. Phys. Chem. Lett. 2, 2125 (2011).Google Scholar
Sun, D., Tian, Y., Zhang, Y., Xu, Z., Sfeir, M.Y., Cotlet, M., Gang, O., ACS Nano 9, 5657 (2015).Google Scholar
Ji, B.T., Giovanelli, E., Habert, B., Spinicelli, P., Nasilowski, M., Xu, X.Z., Lequeux, N., Hugonin, J.P., Marquier, F., Greffet, J.J., Dubertret, B., Nat. Nanotechnol. 10, 170 (2015).Google Scholar
Jin, Y.D., Gao, X.H., Nat. Nanotechnol. 4, 571 (2009).Google Scholar
Karan, N.S., Keller, A.M., Sampat, S., Roslyak, O., Arefin, A., Hanson, C.J., Casson, J.L., Desireddy, A., Ghosh, Y., Piryatinski, A., Iyer, R., Htoon, H., Malko, A.V., Hollingsworth, J.A., Chem. Sci. 6, 2224 (2015).Google Scholar
Brinson, B.E., Lassiter, J.B., Levin, C.S., Bardhan, R., Mirin, N., Halas, N.J., Langmuir 24, 14166 (2008).Google Scholar
Ayala-Orozco, C., Urban, C., Knight, M.W., Urban, A.S., Neumann, O., Bishnoi, S.W., Mukherjee, S., Goodman, A.M., Charron, H., Mitchell, T., Shea, M., Roy, R., Nanda, S., Schiff, R., Halas, N.J., Joshi, A., ACS Nano 8, 6372 (2014).Google Scholar
Chen, Y., Vela, J., Htoon, H., Casson, J.L., Werder, D.J., Bussian, D.A., Klimov, V.I., Hollingsworth, J.A., J. Am. Chem. Soc. 130, 5026 (2008).Google Scholar
Ghosh, Y., Mangum, B.D., Casson, J.L., Williams, D.J., Htoon, H., Hollingsworth, J.A., J. Am. Chem. Soc. 134, 9634 (2012).Google Scholar
Vela, J., Htoon, H., Chen, Y.F., Park, Y.S., Ghosh, Y., Goodwin, P.M., Werner, J.H., Wells, N.P., Casson, J.L., Hollingsworth, J.A., J. Biophotonics 3, 706 (2010).Google Scholar
Shimizu, K.T., Woo, W.K., Fisher, B.R., Eisler, H.J., Bawendi, M.G., Phys. Rev. Lett. 89, 117401 (2002).Google Scholar
Fu, A.H., Micheel, C.M., Cha, J., Chang, H., Yang, H., Alivisatos, A.P., J. Am. Chem. Soc. 126, 10832 (2004).Google Scholar
Schreiber, R., Do, J., Roller, E.M., Zhang, T., Schuller, V.J., Nickels, P.C., Feldmann, J., Liedl, T., Nat. Nanotechnol. 9, 74 (2014).Google Scholar
Rothemund, P.W.K., Nature 440, 297 (2006).Google Scholar
Douglas, S.M., Dietz, H., Liedl, T., Hogberg, B., Graf, F., Shih, W.M., Nature 459, 414 (2009).Google Scholar
Douglas, S.M., Marblestone, A.H., Teerapittayanon, S., Vazquez, A., Church, G.M., Shih, W.M., Nucleic Acids Res. 37, 5001 (2009).Google Scholar
Farahani, J.N., Pohl, D.W., Eisler, H.-J., Hecht, B., Phys. Rev. Lett. 95, 017401 (2005).Google Scholar
Kühn, S., Håkanson, U., Rogobete, L., Sandoghdar, V., Phys. Rev. Lett. 97, 017402 (2006).Google Scholar
Anger, P., Bharadwaj, P., Novotny, L., Phys. Rev. Lett. 96, 113002 (2006).Google Scholar
Pfab, R.J., Zimmermann, J., Hettich, C., Gerhardt, I., Renn, A., Sandoghdar, V., Chem. Phys. Lett. 387, 490 (2004).Google Scholar
Kuhn, S., Mori, G., Agio, M., Sandoghdar, V., Mol. Phys. 106, 893 (2008).Google Scholar
Eghlidi, H., Lee, K.G., Chen, X.W., Götzinger, S., Sandoghdar, V., Nano Lett. 9, 4007 (2009).Google Scholar
Rogobete, L., Kaminski, F., Agio, M., Sandoghdar, V., Opt. Lett. 32, 1623 (2007).Google Scholar
Mohammadi, A., Sandoghdar, V., Agio, M., New J. Phys. 10, 105015 (2008).Google Scholar
Mohammadi, A., Kaminski, F., Sandoghdar, V., Agio, M., J. Phys. Chem. C 114, 7372 (2010).Google Scholar
Chen, X.W., Agio, M., Sandoghdar, V., Phys. Rev. Lett. 108, 233001 (2012).Google Scholar
Lee, K.G., Eghlidi, H., Chen, X.W., Renn, A., Götzinger, S., Sandoghdar, V., Opt. Express 20, 23331 (2012).Google Scholar
Kinkhabwala, A., Yu, Z.F., Fan, S.H., Avlasevich, Y., Mullen, K., Moerner, W.E., Nat. Photonics 3, 654 (2009).Google Scholar
Curto, A.G., Volpe, G., Taminiau, T.H., Kreuzer, M.P., Quidant, R., van Hulst, N.F., Science 329, 930 (2010).Google Scholar
Schafer, C., Gollmer, D.A., Horrer, A., Fulmes, J., Weber-Bargioni, A., Cabrini, S., Schuck, P.J., Kern, D.P., Fleischer, M., Nanoscale 5, 7861 (2013).Google Scholar
Chen, X.W., Götzinger, S., Sandoghdar, V., Opt. Lett. 36, 3545 (2011).Google Scholar
Schell, A.W., Kewes, G., Hanke, T., Leitenstorfer, A., Bratschitsch, R., Benson, O., Aichele, T., Opt. Express 19, 7914 (2011).Google Scholar
Kolesov, R., Grotz, B., Balasubramanian, G., Stoehr, R.J., Nicolet, A.A.L., Hemmer, P.R., Jelezko, F., Wrachtrup, J., Nat. Phys. 5, 470 (2009).Google Scholar
Akimov, A.V., Mukherjee, A., Yu, C.L., Chang, D.E., Zibrov, A.S., Hemmer, P.R., Park, H., Lukin, M.D., Nature 450, 402 (2007).Google Scholar
Yalla, R., Le Kien, F., Morinaga, M., Hakuta, K., Phys. Rev. Lett. 109, 063602 (2012).Google Scholar
Faez, S., Turschmann, P., Haakh, H.R., Gotzinger, S., Sandoghdar, V., Phys. Rev. Lett. 113, 213601 (2014).Google Scholar
Lund-Hansen, T., Stobbe, S., Julsgaard, B., Thyrrestrup, H., Sunner, T., Kamp, M., Forchel, A., Lodahl, P., Phys. Rev. Lett. 101, 113903 (2008).Google Scholar
Lee, K.G., Chen, X.W., Eghlidi, H., Kukura, P., Lettow, R., Renn, A., Sandoghdar, V., Götzinger, S., Nat. Photon. 5, 166 (2011).Google Scholar
Chu, X.L., Brenner, T.J.K., Chen, X.W., Ghosh, Y., Hollingsworth, J.A., Sandoghdar, V., Götzinger, S., Optica 1, 203 (2014).Google Scholar
Cheng, H.-W., Yuan, C.-T., Wang, J.-S., Lin, T.-N., Shen, J.-L., Hung, Y.-J., Tang, J., Tseng, F.-G., J. Phys. Chem. C 118, 18126 (2014).Google Scholar
Ciracì, C., Rose, A., Argyropoulos, C., Smith, D.R., J. Opt. Soc. Am. B 31, 2601 (2014).Google Scholar
Dey, S., Zhou, Y., Tian, X., Jenkins, J., Chen, O., Zou, S., Zhao, J., Proc. SPIE 93730D (2015).Google Scholar
Dey, S., Zhou, Y., Tian, X., Jenkins, J.A., Chen, O., Zou, S., Zhao, J., Nanoscale 7, 6851 (2015).Google Scholar
LeBlanc, S.J., McClanahan, M.R., Jones, M., Moyer, P.J., Nano Lett. 13, 1662 (2013).Google Scholar
Li, Y., Li, Q., Zhang, Z., Liu, H., Lu, X., Fang, Y., Plasmonics 10, 271 (2015).Google Scholar
Liu, J., Kumar, P., Hu, Y., Cheng, G.J., Irudayaraj, J., J. Phys. Chem. C 119, 6331 (2015).Google Scholar
Masuo, S., Naiki, H., Machida, S., Itaya, A., Appl. Phys. Lett. 95, 193106 (2009).Google Scholar
Naiki, H., Masuo, S., Machida, S., Itaya, A., J. Phys. Chem. C 115, 23299 (2011).Google Scholar
Yuan, C., Wang, Y., Cheng, H., Wang, H., Kuo, M., Shih, M., Tang, J., J. Phys. Chem. C 117, 12762 (2013).Google Scholar
Park, Y.-S., Ghosh, Y., Chen, Y., Piryatinski, A., Xu, P., Mack, N.H., Wang, H.-L., Klimov, V.I., Hollingsworth, J.A., Htoon, H., Phys. Rev. Lett. 110, 117401 (2013).CrossRefGoogle Scholar
Park, Y.-S., Ghosh, Y., Xu, P., Mack, N.H., Wang, H.-L., Hollingsworth, J.A., Htoon, H., J. Phys. Chem. Lett. 4, 1465 (2013).Google Scholar
Gao, Y., Roslyak, O., Dervishi, E., Karan, N.S., Ghosh, Y., Sheehan, C.J., Wang, F., Gupta, G., Mohite, A., Dattelbaum, A.M., Doorn, S.K., Hollingsworth, J.A., Piryatinski, A., Htoon, H., Adv. Opt. Mater. 3, 39 (2015).Google Scholar
Wang, F., Karan, N.S., Nguyen, H.M., Ghosh, Y., Sheehan, C.J., Hollingsworth, J.A., Htoon, H., Nanoscale 7, 9387 (2015).Google Scholar
Klimov, V.I., Mikhailovsky, A.A., McBranch, D.W., Leatherdale, C.A., Bawendi, M.G., Science 287, 1011 (2000).Google Scholar
Nair, G., Zhao, J., Bawendi, M.G., Nano Lett. 11, 1136 (2011).Google Scholar
Park, Y.S., Malko, A.V., Vela, J., Chen, Y., Ghosh, Y., Garcia-Santamaria, F., Hollingsworth, J.A., Klimov, V.I., Htoon, H., Phys. Rev. Lett. 106, 187401 (2011).Google Scholar
Durach, M., Rusina, A., Klimov, V.I., Stockman, M.I., New J. Phys. 10, 105011 (2008).Google Scholar
Pustovit, V.N., Shahbazyan, T.V., Phys. Rev. Lett. 102, 077401 (2009).Google Scholar
Govorov, A.O., Bryant, G.W., Zhang, W., Skeini, T., Lee, J., Kotov, N.A., Slocik, J.M., Naik, R.R., Nano Lett. 6, 984 (2006).Google Scholar
Zhou, Z.-K., Li, M., Yang, Z.-J., Peng, X.-N., Su, X.-R., Zhang, Z.-S., Li, J.-B., Kim, N.-C., Yu, X.-F., Zhou, L., Hao, Z.-H., Wang, Q.-Q., ACS Nano 4, 5003 (2010).Google Scholar
Ozel, T., Hernandez-Martinez, P.L., Mutlugun, E., Akin, O., Nizamoglu, S., Ozel, I.O., Zhang, Q., Xiong, Q., Demir, H.V., Nano Lett. 13, 3065 (2013).Google Scholar
Wu, J., Wang, Z.M., Eds., Quantum Dot Molecules (Springer, New York, 2014).Google Scholar
Rolon, J.E., Ulloa, S.E., Phys. Rev. B Condens. Matter 82, 115307 (2010).CrossRefGoogle Scholar
Govorov, A.O., Phys. Rev. B Condens. Matter 71, 155323 (2005).Google Scholar
Stinaff, E.A., Scheibner, M., Bracker, A.S., Ponomarev, I.V., Korenev, V.L., Ware, M.E., Doty, M.F., Reinecke, T.L., Gammon, D., Science 311, 636 (2006).Google Scholar
Neumeier, L., Leib, M., Hartmann, M.J., Phys. Rev. Lett. 111, 063601 (2013).Google Scholar
Chang, D.E., Sorensen, A.S., Demler, E.A., Lukin, M.D., Nat. Phys. 3, 807 (2007).Google Scholar
Hoi, I.-C., Wilson, C., Johansson, G., Palomaki, T., Peropadre, B., Delsing, P., Phys. Rev. Lett. 107, 073601 (2011).Google Scholar
Martin-Cano, D., Martín-Moreno, L., García-Vidal, F.J., Moreno, E., Nano Lett. 10, 3129 (2010).Google Scholar
Heeres, R.W., Kouwenhoven, L.P., Zwiller, V., Nat. Nanotechnol. 8, 719 (2013).Google Scholar
Li, Q., Wei, H., Xu, H., Nano Lett. 14, 3358 (2014).Google Scholar
Kolesov, R., Grotz, B., Balasubramanian, G., Stoehr, R.J., Nicolet, A.A.L., Hemmer, P.R., Jelezko, F., Wrachtrup, J., Nat. Phys. 5, 470 (2009).Google Scholar
Gonzalez-Tudela, A., Martin-Cano, D., Moreno, E., Martin-Moreno, L., Tejedor, C., Garcia-Vidal, F.J., Phys. Rev. Lett. 106, 020501 (2011).Google Scholar
Wang, F., Karan, N.S., Nguyen, H.M., Ghosh, Y., Sheehan, C.J., Hollingsworth, J.A., Htoon, H., Small (2015), doi: 10.1002/smll.201500823.Google Scholar