Hostname: page-component-76fb5796d-x4r87 Total loading time: 0 Render date: 2024-04-27T03:53:45.842Z Has data issue: false hasContentIssue false

Voltage and Dopant Concentration Measurements of Semiconductors using a Band-Pass Toroidal Energy Analyzer Inside a Scanning Electron Microscope

Published online by Cambridge University Press:  30 July 2015

Avinash Srinivasan*
Affiliation:
Department of Electrical and Computer Engineering, Centre for Integrated Circuit Failure Analysis and Reliability (CICFAR), National University of Singapore, Singapore
Anjam Khursheed
Affiliation:
Department of Electrical and Computer Engineering, Centre for Integrated Circuit Failure Analysis and Reliability (CICFAR), National University of Singapore, Singapore
*
*Corresponding author.eleavsr@nus.edu.sg
Get access

Abstract

This paper presents experimental results obtained from a scanning electron microscope (SEM) second-order focusing toroidal electron energy analyzer attachment. The results demonstrate that the analyzer can be used to obtain high signal-to-noise voltage and dopant concentration measurements on semiconductors in the presence of different electric field conditions at the sample. The experimentally calculated relative error of measurement typically varies from 31 to 63, corresponding to secondary electron (SE) signal mean shifts of 9–18 mV. The millivolt accuracy of these results is over one order of magnitude better than earlier quantitative dopant concentration measurements made by a retarding field analyzer.

Type
Materials Applications and Techniques
Copyright
© Microscopy Society of America 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Chee, A.K., Broom, R.F., Humphreys, C.J. & Bosch, E.G. (2011). A quantitative model for doping contrast in the scanning electron microscope using calculated potential distributions and Monte Carlo simulations. J Appl Phys 109(1), 013109.CrossRefGoogle Scholar
Chung, S., Wheeler, V., Myers-Ward, R., Nyakiti, L.O., Eddy, C.R., Gaskill, D.K., Skowronski, M. & Picard, Y.N. (2011). Secondary electron dopant contrast imaging of compound semiconductor junctions. J Appl Phys 110(1), 014902.CrossRefGoogle Scholar
De Wolf, P., Stephenson, R., Trenkler, T., Clarysse, T., Hantschel, T. & Vandervorst, W. (2000). Status and review of two-dimensional carrier and dopant profiling using scanning probe microscopy. J Vac Sci Technol B 18(1), 361368.Google Scholar
Dubbeldam, L. & Kruit, P. (1987). Signal-to-noise ratio improvement in electron-beam testing by using a dispersive analyzer. Scanning Microsc 1(4), 16471650.Google Scholar
Duhayon, N., Eyben, P., Fouchier, M., Clarysse, T., Vandervorst, W., Álvarez, D., Schoemann, S., Ciappa, M., Stangoni, M. & Fichtner, W. (2004). Assessing the performance of two-dimensional dopant profiling techniques. J Vac Sci Technol B 22(1), 385393.CrossRefGoogle Scholar
El‐Gomati, M., Zaggout, F., Jayacody, H., Tear, S. & Wilson, K. (2005). Why is it possible to detect doped regions of semiconductors in low voltage SEM: A review and update. Surf Interface Anal 37(11), 901911.Google Scholar
Elliott, S.L., Broom, R.F. & Humphreys, C.J. (2002). Dopant profiling with the scanning electron microscope—A study of Si. J Appl Phys 91(11), 91169122.Google Scholar
Frank, L., Mika, F., Hovorka, M., Valdaitsev, D., Schönhense, G. & Müllerová, I. (2007). Dopant contrast in semiconductors as interpretation challenge at imaging by electrons. Mater Trans 48(5), 936939.Google Scholar
Frank, L., Müllerová, I., Valdaitsev, D.A., Gloskovskii, A., Nepijko, S.A., Elmers, H.-J. & Schönhense, G. (2006). The origin of contrast in the imaging of doped areas in silicon by slow electrons. J Appl Phys 100(9), 093712.Google Scholar
Goldstein, J., Newbury, D.E., Joy, D.C., Lyman, C.E., Echlin, P., Lifshin, E., Sawyer, L. & Michael, J.R. (2003). Scanning Electron Microscopy and X-Ray Microanalysis. Springer. http://www.springer.com/us/book/9780306472923.Google Scholar
Gribelyuk, M., McCartney, M., Li, J., Murthy, C., Ronsheim, P., Doris, B., McMurray, J., Hegde, S. & Smith, D.J. (2002). Mapping of electrostatic potential in deep submicron CMOS devices by electron holography. Phys Rev Lett 89(2), 025502.Google Scholar
Gudiksen, M.S., Lauhon, L.J., Wang, J., Smith, D.C. & Lieber, C.M. (2002). Growth of nanowire superlattice structures for nanoscale photonics and electronics. Nature 415(6872), 617620.CrossRefGoogle ScholarPubMed
Hoang, H., Osterberg, M. & Khursheed, A. (2011). A high signal-to-noise ratio toroidal electron spectrometer for the SEM. Ultramicroscopy 111(8), 10931100.CrossRefGoogle ScholarPubMed
Huang, M.H., Mao, S., Feick, H., Yan, H., Wu, Y., Kind, H., Weber, E., Russo, R. & Yang, P. (2001). Room-temperature ultraviolet nanowire nanolasers. science 292(5523), 18971899.Google Scholar
Kazemian, P., Mentink, S., Rodenburg, C. & Humphreys, C. (2006). High resolution quantitative two-dimensional dopant mapping using energy-filtered secondary electron imaging. J Appl Phys 100(5), 054901.Google Scholar
Kazemian, P., Mentink, S.A.M., Rodenburg, C. & Humphreys, C.J. (2007). Quantitative secondary electron energy filtering in a scanning electron microscope and its applications. Ultramicroscopy 107(2–3), 140150.Google Scholar
Khursheed, A. (1992). Multi-channel vs. conventional retarding field spectrometers for voltage contrast. Microelectron Eng 16(1), 4350.Google Scholar
Khursheed, A. (2011). Secondary electron spectrometers. In Scanning Electron Microscope Optics and Spectrometers, pp. 223–261. http://www.worldscientific.com/worldscibooks/10.1142/7094.Google Scholar
Khursheed, A. & Dinnis, A. (1990). A time-of-flight voltage contrast detector for measurements on VLSI circuits. Meas Sci Technol 1(7), 581.Google Scholar
Khursheed, A. & Hoang, H.Q. (2008). A second-order focusing electrostatic toroidal electron spectrometer with 2π radian collection. Ultramicroscopy 109(1), 104110.Google Scholar
Klingshirn, C. (1975). The luminescence of ZnO under high one‐and two‐quantum excitation. Physica Status Solidi (b) 71(2), 547556.CrossRefGoogle Scholar
Leamy, H. (1982). Charge collection scanning electron microscopy. J Appl Phys 53(6), R51R80.Google Scholar
Lei, M. (2014). Advanced Electron-Beam Techniques for Solar Cell Characterization. National University of Singapore. https://goo.gl/PgSPHT.Google Scholar
LORENTZ—2EM, I.E.S.I., Canada (2009). LORENTZ - 2EM. Canada: Integrated Engineering Software Inc.Google Scholar
Mika, F. & Frank, L. (2008). Two-dimensional dopant profiling with low-energy SEM. J Microsc 230(1), 7683.Google Scholar
Mizuhara, Y., Kato, J., Nagatomi, T., Takai, Y. & Inoue, M. (2002). Quantitative measurement of surface potential and amount of charging on insulator surface under electron beam irradiation. J Appl Phys 92(10), 61286133.Google Scholar
National Instruments (2010). National Instruments LabVIEWTM 2010. National Instruments.Google Scholar
Oatley, C.W. (1966). The scanning electron microscope. Sci Prog Oxf 54, 483495.Google Scholar
Paul, G. & Sen, S. (2002). Sol–gel preparation, characterization and studies on electrical and thermoelectrical properties of gallium doped zinc oxide films. Mater Lett 57(3), 742746.Google Scholar
Perovic, D., Castell, M., Howie, A., Lavoie, C., Tiedje, T. & Cole, J. (1995). Field-emission SEM imaging of compositional and doping layer semiconductor superlattices. Ultramicroscopy 58(1), 104113.Google Scholar
Rau, E. & Robinson, V. (1996). An annular toroidal backscattered electron energy analyser for use in scanning electron microscopy. Scanning 18(8), 556561.Google Scholar
Rau, E. & Tagachenkov, A. (2013). Image contrast of impurity regions of semiconductor crystals in scanning electron microscopy. Bull Russian Acad Sci 77(8), 943947.Google Scholar
Rau, W., Schwander, P., Baumann, F., Höppner, W. & Ourmazd, A. (1999). Two-dimensional mapping of the electrostatic potential in transistors by electron holography. Phys Rev letters 82(12), 2614.Google Scholar
Reimer, L. (2000). Scanning electron microscopy: Physics of image formation and microanalysis. Meas Sci Technol 11(12), 1826.Google Scholar
Sarkar, S., Patra, S., Bera, S., Paul, G. & Ghosh, R. (2012). Rectifying properties of sol–gel synthesized Al: ZnO/Si (N–n) thin film heterojunctions. Physica E 46, 15.CrossRefGoogle Scholar
Schönjahn, C., Broom, R., Humphreys, C., Howie, A. & Mentink, S. (2003). Optimizing and quantifying dopant mapping using a scanning electron microscope with a through-the-lens detector. Appl Phys Lett 83(2), 293295.Google Scholar
Sealy, C.P., Castell, M.R. & Wilshaw, P.R. (2000). Mechanism for secondary electron dopant contrast in the SEM. J Electron Microsc 49(2), 311321.Google Scholar
Srinivasan, A. & Khursheed, A. (2014). Probing and analyzing buried interfaces of multifunctional oxides using a secondary electron energy analyzer. Microsc Microanal 20(05), 14941498.Google Scholar
Thong, J.T. (1993). Electron Beam Testing Technology. Plenum Publishing Corporation.Google Scholar
Tsurumi, D., Hamada, K. & Kawasaki, Y. (2010). Energy-filtered imaging in a scanning electron microscope for dopant contrast in InP. J Electron Microsc 59(S1), S183S187.CrossRefGoogle Scholar
Tsurumi, D., Hamada, K. & Kawasaki, Y. (2012). Energy-filtered secondary-electron imaging for nanoscale dopant mapping by applying a reverse bias voltage. Jpn J Appl Phys 51(10R), 106503.Google Scholar
Venables, D., Jain, H. & Collins, D.C. (1998). Secondary electron imaging as a two-dimensional dopant profiling technique: Review and update. J Vac Sci Technol B 16(1), 362366.Google Scholar