Hostname: page-component-7c8c6479df-hgkh8 Total loading time: 0 Render date: 2024-03-28T05:52:32.831Z Has data issue: false hasContentIssue false

Linear and nonlinear optical properties of aluminum borate crystal Al5BO9: Experiment and calculation

Published online by Cambridge University Press:  27 July 2015

Donghai An*
Affiliation:
Department of Physics, Changji University, Changji 831100, China; and Key Laboratory of Functional Materials and Devices for Special Environments of CAS, Xinjiang Technical Institute of Physics & Chemistry of CAS, Xinjiang Key Laboratory of Electronic Information Materials and Devices, Urumqi 830011, China
Min Zhang*
Affiliation:
Key Laboratory of Functional Materials and Devices for Special Environments of CAS, Xinjiang Technical Institute of Physics & Chemistry of CAS, Xinjiang Key Laboratory of Electronic Information Materials and Devices, Urumqi 830011, China
Danni Li
Affiliation:
Key Laboratory of Functional Materials and Devices for Special Environments of CAS, Xinjiang Technical Institute of Physics & Chemistry of CAS, Xinjiang Key Laboratory of Electronic Information Materials and Devices, Urumqi 830011, China; and University of the Chinese Academy of Sciences, Beijing 100049, China
Shilie Pan*
Affiliation:
Key Laboratory of Functional Materials and Devices for Special Environments of CAS, Xinjiang Technical Institute of Physics & Chemistry of CAS, Xinjiang Key Laboratory of Electronic Information Materials and Devices, Urumqi 830011, China
Huimin Chen*
Affiliation:
Department of Physics, Changji University, Changji 831100, China
Zhihua Yang
Affiliation:
Key Laboratory of Functional Materials and Devices for Special Environments of CAS, Xinjiang Technical Institute of Physics & Chemistry of CAS, Xinjiang Key Laboratory of Electronic Information Materials and Devices, Urumqi 830011, China
Yingtao Zhu
Affiliation:
Department of Physics, Changji University, Changji 831100, China
Yi Sun
Affiliation:
Department of Physics, Changji University, Changji 831100, China
Hui Zhang*
Affiliation:
Key Laboratory of Functional Materials and Devices for Special Environments of CAS, Xinjiang Technical Institute of Physics & Chemistry of CAS, Xinjiang Key Laboratory of Electronic Information Materials and Devices, Urumqi 830011, China; and University of the Chinese Academy of Sciences, Beijing 100049, China
Yangyang Li
Affiliation:
Department of Physics, Changji University, Changji 831100, China
*
a)Address all correspondence to these authors. e-mail: zhangmin@ms.xjb.ac.cn
c)e-mail: xjcjhmc@163.com
Get access

Abstract

A noncentrosymmetric aluminum borate crystal, Al5BO9, was obtained via high-temperature solution method. Considering the structure diversities of Al5BO9, the single crystal structure was cautiously redetermined before the investigation. The fundamental building blocks of the structure are BO3 triangles, AlO4 tetrahedra, and AlO6 octahedra. Since Al5BO9 only consists of strong covalent B–O and Al–O bonds, it is worth investigating the structure–optical property relationship thoroughly, especially the linear and nonlinear optical properties. To gain further insight into the origin of the nonlinear optical response of Al5BO9, the electronic structure calculations, second harmonic generation (SHG)-weighted electron density, and dipole moment of polyhedra were analyzed in detail. All evidences deduced from calculated results indicate that the SHG contribution from the Al–O polyhedra is more pronounced than that of the BO3 group in Al5BO9, which is anticipated to open a window for the search and design of new inorganic materials.

Type
Articles
Copyright
Copyright © Materials Research Society 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Becker, P.: Borate materials in nonlinear optics. Adv. Mater. 10, 979 (1998).3.0.CO;2-N>CrossRefGoogle Scholar
Chen, C.T., Ye, N., Lin, J., Jiang, J., Zeng, W.R., and Wu, B.C.: Computer-assisted search for nonlinear optical crystals. Adv. Mater. 11, 1071 (1999).Google Scholar
Sasaki, T., Mori, Y., Yoshimura, M., Yap, Y.K., and Kamimura, T.: Recent development of nonlinear optical borate crystals: Key materials for generation of visible and UV light. Mater. Sci. Eng., R 30, 1 (2000).CrossRefGoogle Scholar
Katsumata, T., Yoshimura, T., Kanazawa, K., and Aizawa, H.: Growth of lithium borate crystals from the vitreous state. J. Mater. Res. 9, 8 (1994).Google Scholar
Ding, Y. and Miura, Y.: Stimulated surface crystallization of β- barium borate on glass due to ultrasonic treatment and second harmonic generation. J. Mater. Res. 11, 2 (1996).CrossRefGoogle Scholar
Chen, C.T., Wu, B.C., Jiang, A.D., and You, G.M.: A new-type ultraviolet SHG crystal-beta-BaB2O4 . Sci. Sin., Ser. B 28, 235 (1985).Google Scholar
Chen, C.T., Wu, Y.C., Jiang, A.D., Wu, B.C., You, G.M., Li, R.K., and Lin, S.J.: New nonlinear-optical crystal: LiB3O5 . J. Opt. Soc. Am. B 6, 616 (1989).Google Scholar
Mori, Y., Kuroda, I., Nakajima, S., Sasaki, T., and Nakai, S.: New nonlinear optical crystal: Cesium lithium borate. Appl. Phys. Lett. 67, 1818 (1995).Google Scholar
Wu, B.C., Tang, D.Y., Ye, N., and Chen, C.T.: Linear and nonlinear optical properties of the KBe2BO3F2 (KBBF) crystal. Opt. Mater. 5, 105 (1996).Google Scholar
Yu, H.W., Wu, H.P., Pan, S.L., Yang, Z.H., Hou, X.L., Su, X., Jing, Q., Poeppelmeier, K.R., and Rondinelli, J.M.: Cs3Zn6B9O21: A chemically benign member of the KBBF family exhibiting the largest second harmonic generation response. J. Am. Chem. Soc. 136, 1264 (2014).CrossRefGoogle ScholarPubMed
Lin, H.H., Liang, H.B., Tian, Z.F., Su, Q., Xie, H.Y., and Ding, J.F.: Vacuum-ultraviolet–vis luminescence of dibarium magnesium orthoborate Ba2Mg(BO3)2 doped with Ce3+ and Eu2+ ions. J. Mater. Res. 21, 4 (2006).Google Scholar
Emme, H., Valldor, M., Pöttgen, R., and Huppertz, H.: Associating borate and silicate chemistry by extreme conditions: High-pressure synthesis, crystal structure, and properties of the new borates RE3B5O12 (RE = Er-Lu). Chem. Mater. 17, 2707 (2005).Google Scholar
Lu, C.H. and Godbole, S.V.: Synthesis and characterization of ultraviolet-emitting cerium-ion-doped SrBPO5 phosphors. J. Mater. Res. 19, 8 (2004).Google Scholar
Wu, H.P., Yu, H.W., Yang, Z.H., Hou, X.L., Su, X., Pan, S.L., Poeppelmeier, K.R., and Rondinelli, J.M.: Designing a deep-ultraviolet nonlinear optical material with a large second harmonic generation response. J. Am. Chem. Soc. 135, 4215 (2013).Google Scholar
Wu, Y.C., Sasaki, T., Nakai, S., okotani, A.Y., Tang, H., and Chen, C.T.: Structural, electronic and optical properties of novel carbonate fluorides ABCO3 F (A = K, Rb, Cs; B =Ca, Sr). Appl. Phys. Lett. 62, 2614 (1993).Google Scholar
Zhang, M., Su, X., Pan, S.L., Wang, Z., Zhang, H., Yang, Z.H., Zhang, B.B., Dong, L.Y., Wang, Y., Zhang, F.F., and Yang, Y.: Linear and nonlinear optical properties of K3B6O10Br single crystal: Experiment and calculation. J. Phys. Chem. C 118, 11849 (2014).Google Scholar
Hu, Z.G., Higashiyama, T., Yoshimura, M., Yap, Y.K., Mori, Y., and Sasaki, T.: A new nonlinear optical borate crystal K2Al2B2O7(KAB). Jpn. J. Appl. Phys. 37, L1093 (1998).Google Scholar
Liu, L.J., Liu, C.L., Wang, X.Y., Hu, Z.G., Li, R.K., and Chen, C.T.: Impact of Fe3+ on UV absorption of K2Al2B2O7 crystals. Solid State Sci. 11, 841 (2009).Google Scholar
Zhou, Y., Yue, Y.C., Wang, J.N., Yang, F., Cheng, X.K., Cui, D.F., Peng, Q.J., Hu, Z.G., and Xu, Z.Y.: Nonlinear optical properties of BaAlBO3F2 Crystal. Opt. Express 17, 20033 (2009).Google Scholar
Chen, C.T., Lin, Z.S., and Wang, Z.Z.: The development of new borate-based UV nonlinear optical crystals. Appl. Phys. B 80, 1 (2005).CrossRefGoogle Scholar
Zhou, J., Fang, W.H., Rong, C., and Yang, G.Y.: A series of open-framework aluminoborates templated by transition-metal complexes. Chem. Eur. J. 16, 4852 (2010).CrossRefGoogle ScholarPubMed
Sokolova, Y.V., Azizov, A.V., Simonov, M.A., Leonyuk, N.I., and Belov, N.V.: The crystal structure of the synthetic ortho-tri-borate Al5(BO3)O6 . Dokl. Akad. Nauk SSSR 243, 655 (1978).Google Scholar
Gatta, G.D., Lotti, P., Merlini, M., Liermann, H.P., Fisch, M., Rotiroti, N., and Armbruster, T.: High-pressure behavior and phase stability of Al5BO9, a mullite-type ceramic material. J. Am. Ceram. Soc. 96, 2583 (2013).CrossRefGoogle Scholar
Shin, Y., Lee, D.W., Hong, J., Kawk, K., and Ok, K.M.: Second-harmonic generating properties of polar noncentrosymmetric aluminoborate solid solutions, Al5−xGaxBO9 (0.0 ≤ x ≤ 0.5). Dalton Trans. 41, 3233 (2012).Google Scholar
Mazza, D., Vallino, M., and Busca, G.: Mullite-type structures in the system Al2O3-Me2O (Me = Na, K) and Al2O3-B2O3 . J. Am. Ceram. Soc. 75, 1929 (1992).Google Scholar
Sheldrick, G.M.: SHELXTL, Version 6.14; Bruker Analytical X-ray Instruments. Inc. Madison. WI. (2003).Google Scholar
Spek, A.L.: Single-crystal structure validation with the program PLATON. J. Appl. Crystallogr. 36, 7 (2003).Google Scholar
Kubelka, P. and Munk, F.Z.: A contribution to the optics of pigments. Tech. Phys. 12, 593 (1931).Google Scholar
Kurtz, S.K. and Perry, T.T.: A powder technique for the evaluation of nonlinear optical materials. J. Appl. Phys. 39, 3798 (1968).CrossRefGoogle Scholar
Clark, S.J., Segall, M.D., Pickard, C.J., Hasnip, P.J., Probert, M.J., Rrfson, K., and Payne, M.C.: First principles methods using CASTEP. Z. Kristallogr. 220, 568 (2005).Google Scholar
Payne, M.C., Teter, M.P., Allan, D.C., Arias, T.A., and Joannopoulos, J.D.: Iterative minimization techniques for ab initio total-energy calculations: Molecular dynamics and conjugate gradients. Rev. Mod. Phys. 64, 1045 (1992).Google Scholar
Rashkeev, S.N., Lambrecht, W.R.L., and Segall, B.: Efficient ab initio method for the calculation of frequency-dependent second-order optical response in semiconductors. Phys Rev. B. 57, 3905 (1998).CrossRefGoogle Scholar
Rappe, A.M., Rabe, K., and Kaxiras, M.E.: Optimized pseudopotentials. Phys. Rev. B. 41, 1227 (1990).Google Scholar
Brown, I.D. and Altermatt, D.: Bond-valence parameters obtained from a systematic analysis of the inorganic crystal structure database. Acta Crystallogr., Sect. B: Struct. Sci. 41, 244 (1985).Google Scholar
Vegas, A., Cano, F.H., and Garcis-Blance, S.: Refinement of aluminium orthoborate. Acta Crystallogr., Sect. B: Struct. Sci. 33, 3607 (1977).CrossRefGoogle Scholar
Ju, J., Yang, T., Li, G.B., Liao, F.H., Wang, Y.X., You, L.P., and Lin, J.H.: PKU-5: An aluminoborate with novel octahedral framework topology. Chem. Eur. J. 10, 3901 (2004).Google Scholar
Cheng, C., Tang, C., Ding, X.X., Huang, X.T., Huang, Z.X., Qi, S.R., Hu, L., and Li, Y.X.: Catalytic synthesis of aluminum borate nanowires. Chem. Phys. Lett. 373, 626 (2003).Google Scholar
Wang, J., Sha, J., Yang, Q., Wang, Y.W., and Yang, D.R.: Synthesis of aluminium borate nanowires by sol–gel method. Mater. Res. Bull. 40, 1551 (2005).Google Scholar
Li, H.J., Li, Z.J., Qi, L.H., and Oy, H.B.: Effect of extrusion on the thermal expansion behavior of Al18B4O33, whisker–Mg composites. Scr. Mater. 61, 512 (2009).Google Scholar
Fisch, M., Armbrustera, T., Rentsch, D., Libowitzky, E., and Pettke, T.: Crystal-chemistry of mullite-type aluminoborates Al18B4O33 and Al5BO9: A stoichiometry puzzle. J. Solid State Chem. 184, 70 (2011).Google Scholar
Van der Mooren, M.H., Rasing, T., and Bluyssen, H.J.A.: Determination of type I phase matching angles and conversion efficiency in KTP. Appl. Opt. 34, 934 (1995).Google Scholar
Debye, P.: Polar Molecules. (The Chemical Catalog Company Inc., New York, 1929); p. 99.Google Scholar
Halasyamani, P.S.: Asymmetric cation coordination in oxide materials: influence of lone-pair cations on the intra-octahedral distortion in d0 transition metals. Chem. Mater. 16, 3586 (2004).CrossRefGoogle Scholar
Zhang, J.J., Zhang, Z.H., Zhang, W.G., Zheng, Q.X., Sun, Y.X., Zhang, C.Q., and Tao, X.T.: Polymorphism of BaTeMo2O9: A new polar polymorph and the phase transformation. Chem. Mater. 23, 3752 (2011).Google Scholar
Mori-Sanchez, P., Cohen, A.J., and Yang, W.T.: Localization and delocalization errors in density functional theory and implications for band-gap prediction. Phys. Rev. Lett. 100, 146401 (2008).Google Scholar
Cohen, A.J., Mori-Sanchez, P., and Yang, W.T.: Fractional charge perspective on the band gap in density-functional theory. Phys. Rev. B. 77, 115123 (2008).Google Scholar
Reshak, A.H., Kityk, I.V., and Auluck, S.: Investigation of the linear and nonlinear optical susceptibilities of KTiOPO4 single crystals: Theory and experiment. J. Phys. Chem. B 114, 16705 (2010).CrossRefGoogle ScholarPubMed
Reshak, A.H., Chen, X.A., Auluck, S., Kamarudin, H., Chyský, J., Wojciechowski, A., and Kityk, I.V.: Linear and nonlinear optical susceptibilities and the hyperpolarizability of borate LiBaB9O15 single-crystal: Theory and experiment. J. Phys. Chem. B 117, 14141 (2013).Google Scholar
Supplementary material: File

An supplementary material

Tables S1-S2 and Figures S1-S5

Download An supplementary material(File)
File 512 KB