Hostname: page-component-76fb5796d-45l2p Total loading time: 0 Render date: 2024-04-26T21:05:41.269Z Has data issue: false hasContentIssue false

Molecular identification of the strongyloid nematode Oesophagostomum aculeatum in the Asian wild elephant Elephas maximus

Published online by Cambridge University Press:  27 July 2015

O. Phuphisut
Affiliation:
Department of Helminthology, Faculty of Tropical Medicine, Mahidol University, Ratchathewi, Bangkok10400, Thailand
W. Maipanich
Affiliation:
Department of Helminthology, Faculty of Tropical Medicine, Mahidol University, Ratchathewi, Bangkok10400, Thailand
S. Pubampen
Affiliation:
Department of Helminthology, Faculty of Tropical Medicine, Mahidol University, Ratchathewi, Bangkok10400, Thailand
M. Yindee
Affiliation:
Department of Clinical Sciences and Public Health, Faculty of Veterinary Sciences, Mahidol University, Phuttamonthon, Nakorn-pathom73170, Thailand
N. Kosoltanapiwat
Affiliation:
Department of Microbiology and Immunology, Faculty of Tropical Medicine, Ratchathewi, Mahidol University, Bangkok10400, Thailand
S. Nuamtanong
Affiliation:
Department of Helminthology, Faculty of Tropical Medicine, Mahidol University, Ratchathewi, Bangkok10400, Thailand
A. Ponlawat
Affiliation:
Department of Entomology, Armed Force Research Institute of Medical Sciences, Ratchathewi, Bangkok10400, Thailand
P. Adisakwattana*
Affiliation:
Department of Helminthology, Faculty of Tropical Medicine, Mahidol University, Ratchathewi, Bangkok10400, Thailand
*
*Fax: 66 (0) 2643-5600 E-mail: poom.adi@mahidol.ac.th

Abstract

The transmission of zoonoses by wildlife, including elephants, is a growing global concern. In this study, we screened for helminth infections among Asian wild elephants (Elephas maximus) of the Salakpra Wildlife Sanctuary, Kanchanaburi, Thailand. Elephant faecal samples (45) were collected from the sanctuary grounds during January through November 2013 and assayed individually using the tetranucleotide microsatellite technique. Microscopic examination indicated a high prevalence of strongylids (93.0%) and low prevalences of trichurids (2.3%) and ascarids (2.3%). To identify the strongylid species, small subunit (SSU) rDNA sequences were amplified from copro-DNA and compared with sequences in GenBank. The generated SSU-rDNA sequences comprised five distinct haplotypes that were closely related to Oesophagostomum aculeatum. A phylogenetic analysis that incorporated related nematodes yielded a tree separated into two main clades, one containing our samples and human and domestic animal hookworms and the other consisting of Strongyloides. The present results indicate that O. aculeatum in local elephants is a potential source of helminthiasis in human and domestic animals in this wild-elephant irrupted area.

Type
Research Papers
Copyright
Copyright © Cambridge University Press 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Anderson, J., Upadhayay, R., Sudimack, D., Nair, S., Leland, M., Williams, J.T. & Anderson, T.J.C. (2012) Trichuris sp. and Strongyloides sp. infections in a free-ranging baboon colony. Journal of Parasitology 98, 205208.Google Scholar
Archie, E.A., Moss, C.J. & Alberts, S.C. (2003) Characterization of tetranucleotide microsatellite loci in the African Savannah elephant (Loxodonta africana africana). Molecular Ecology Notes 3, 244246.CrossRefGoogle Scholar
Arizono, N., Yamada, M., Tegoshi, T. & Onishi, K. (2012) Molecular identification of Oesophagostomum and Trichuris eggs isolated from wild Japanese macaques. Korean Journal of Parasitology 50, 253257.Google Scholar
Basson, P.A., McCully, R.M., de Vos, V., Young, E. & Kruger, S.P. (1971) Some parasitic and other natural diseases of the African elephant in the Kruger National Park. Onderstepoort Journal of Veterinary Research 38, 239254.Google Scholar
Behl, R., Kaul, R., Sheoran, N., Behl, J., Tantia, M.S. & Vijh, R.K. (2002) Genetic identity of two Indian pig types using microsatellite markers. Animal Genetics 33, 158159.Google Scholar
Blotkamp, J., Krepel, H.P., Kumar, V., Baeta, S., van't Noordende, J.M. & Polderman, A.M. (1993) Observations on the morphology of adults and larval stages of Oesophagostomum sp. isolated from man in northern Togo and Ghana. Journal of Helminthology 67, 4961.CrossRefGoogle ScholarPubMed
Boomker, J. (2014) Helminth infections of wildlife. Licensed under a Creative Commons Attribution license. Available online at http://www.afrivip.org/education/wildlife-health/helminth-wildlife/2014 (accessed accessed February 2015).Google Scholar
Boomker, J., Horak, I.G. & Flamand, J.R.B. (1991) Parasites of South African wildlife XII. Helminths of Nyala, Tragelaphus angasii, in Natal. Onderstepoort Journal of Veterinary Research 58, 275280.Google Scholar
Bowman, D.D., Lynn, R.C., Georgi, J.R. & Eberhard, M.L. (2003) Georgi's parasitology for veterinarians. 8th edn. 422 pp. St. Louis, Missouri, Saunders.Google Scholar
Carreno, R.A., Neimanis, A.S., Lindsjo, J., Thongnoppakun, P., Barta, J.R. & Peregrine, A.S. (2001) Parasites found in faeces of Indian elephants (Elephas maximus) in Thailand following treatment with mebendazole, with observations on Ptenderius papillatus (Cobbold, 1882) Stiles and Goldberger, 1910 by scanning electron microscopy. Helminthologia 38, 7579.Google Scholar
Constantino-Santos, D.M.A., Basiao, Z.U., Wade, C.M., Santos, B.S. & Fontanilla, I.K.C. (2014) Identification of Angiostrongylus cantonensis and other nematodes using the SSU rDNA in Achatina fulica populations of Metro Manila. Tropical Biomedicine 31, 327335.Google Scholar
Costa, V., Pérez-González, J., Santos, P., Fernández-Llario, P., Carranza, J., Zsolnai, A., Anton, I., Buzgó, J., Varga, G., Monteiro, N. & Beja-Pereira, A. (2012) Microsatellite markers for identification and parentage analysis in the European wild boar (Sus scrofa). BMC Research Notes 5, 479.Google Scholar
Dorris, M., Viney, M.E. & Blaxter, M.L. (2002) Molecular phylogenetic analysis of the genus Strongyloides and related nematodes. International Journal for Parasitology 32, 15071517.Google Scholar
du Toit, J.G. (2001) Veterinary care of African elephants. pp. 159. Pretoria, Republic of South Africa, Novartis.Google Scholar
Fernando, P., Pfrender, M.E., Encalada, S.E. & Lande, R. (2000) Mitochondrial DNA variation, phylogeography and population structure of the Asian elephant. Heredity 84, 362372.Google Scholar
Gasser, R.B., de Gruijter, J.M. & Polderman, A.M. (2006) Insights into the epidemiology and genetic make-up of Oesophagostomum bifurcum from human and non-human primates using molecular tools. Parasitology 132, 453460.Google Scholar
Ghai, R.R., Chapman, C.A., Omeja, P.A., Davies, T.J. & Goldberg, T.L. (2014) Nodule worm infection in humans and wild primates in Uganda: cryptic species in a newly identified region of human transmission. PLoS Neglected Tropical Diseases 8, e2641.Google Scholar
Greve, J.H. (1969) Strongyloides elephantis sp. n. from an Indian elephant. Elephas indicus. Journal of Parasitology 55, 498499.Google Scholar
Holterman, M., van der Wurff, A., van den Elsen, S., van Megen, H., Bongers, T., Holovachov, O., Bakker, J. & Helder, J. (2006) Phylum-wide analysis of SSU rDNA reveals deep phylogenetic relationships among nematodes and accelerated evolution toward crown clades. Molecular Biology and Evolution 23, 17921800.Google Scholar
Horak, I.G., Boomker, J., De Vos, V. & Potgieter, F.T. (1988) Parasites of domestic and wild animals in South Africa, XXIII. Helminth and arthropod parasites of warthogs, Phacochoerus aethiopicus, in the eastern Transvaal Lowveld. Onderstepoort Journal of Veterinary Research 55, 145152.Google Scholar
Itoh, T., Sato, Y., Mano, T. & Iwata, R. (2009) Estimating a suitable microsatellite marker set for individual identification and parentage tests of brown bear (Ursus arctos) in the Akan-Shiranuka Region, eastern Hokkaido, Japan. Journal of Forest Research 14, 117122.Google Scholar
Kamel, A.G.M., Yang, C.O. & Norazah, A. (1995) Oesophagostomum aculeatum, the nodular worm causing helminthoma in man in Malaysia. Internal Medicine Journal 2, 287290.Google Scholar
Karim, N. & Yang, C.O. (1992) Oesophagostomiasis in man: report of the first Malaysian case with emphasis on its pathology. Malaysian Journal of Pathology 14, 1924.Google ScholarPubMed
Kaul, R., Singh, A., Vijh, R.K., Tantia, M.S. & Behl, R. (2001) Evaluation of the genetic variability of 13 microsatellite markers in native Indian pigs. Journal of Genetics 80, 149153.Google Scholar
Malaivijitnond, S., Chaiyabutr, N., Urasopon, N. & Hamada, Y. (2006) Intestinal nematode parasites of long-tailed macaques (Macaca fascicularis) inhabiting some tourist attraction sites in Thailand. Proceedings of the 32nd Congress on Science and Technology of Thailand, Bangkok, Thailand. 1–3 November. pp. 7377.Google Scholar
Marigo, J., Thompson, C.C., Santos, C.P. & Iñiguez, A.M. (2011) The Synthesium Brachycladiidae Odhner, 1905 (Digenea) association with hosts based on nuclear and mitochondrial genes. Parasitology International 60, 530533.Google Scholar
Mejia-Madrid, H.H. & Aguirre-Macedo, M.L. (2011) Systematics of Mexiconema cichlasomae (Nematoda: Daniconematidae) based on sequences of SSU rDNA. Journal of Parasitology 97, 160162.Google Scholar
Ross, R.A., Gibson, D.I. & Harris, E.A. (1989) Cutaneous oesophagostomiasis in man. Journal of Helminthology 63, 261265.CrossRefGoogle ScholarPubMed
Setasuban, P. (1989) Soil-transmitted helminthiasis and laboratory diagnosis. Bangkok, Thailand, Mahidol University.Google Scholar
Sikes, S.K. (1971) The natural history of the African elephant. London, UK, Trinity Press.Google Scholar
Soulsby, E.J.L. (1982) Helminths, arthropods and protozoa of domesticated animals. 7th edn. 809 pp. London, Baillière Tindall.Google Scholar
Suwattana, D., Koykul, W., Jirasupphachok, J. & Kanchanapangka, S. (2007) Microsatellite polymorphism and parentage control in Thai domestic elephants (Elephas maximus). Thai Journal of Veterinary Medicine 37, 3338.Google Scholar
Suwattana, S., Jirasupphachok, J., Kanchanapangka, S. & Koykul, W. (2010) Tetranucleotide microsatellite markers for molecular testing in Thai domestic elephants (Elephas maximus indicus). Thai Journal of Veterinary Medicine 40, 405409.Google Scholar
Tamura, K., Peterson, D., Peterson, N., Stecher, G., Nei, M. & Kumar, S. (2011) MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Molecular Biology and Evolution 28, 27312739.CrossRefGoogle ScholarPubMed
Thompson, J.D., Gibson, T.J., Plewniak, F., Jeanmougin, F. & Higgins, D.G. (1997) The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Research 25, 48764885.Google Scholar