Hostname: page-component-76fb5796d-5g6vh Total loading time: 0 Render date: 2024-04-25T15:07:18.082Z Has data issue: false hasContentIssue false

Scaling bounds on dissipation in turbulent flows

Published online by Cambridge University Press:  22 July 2015

Christian Seis*
Affiliation:
Institut für Angewandte Mathematik, Universität Bonn, Endenicher Allee 60, 53115 Bonn, Germany
*
Email address for correspondence: seis@iam.uni-bonn.de

Abstract

We propose a new rigorous method for estimating statistical quantities in fluid dynamics such as the (average) energy dissipation rate directly from the equations of motion. The method is tested on shear flow, channel flow, Rayleigh–Bénard convection and porous medium convection.

Type
Papers
Copyright
© 2015 Cambridge University Press 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ahlers, G., Grossmann, S. & Lohse, D. 2009 Heat transfer and large scale dynamics in turbulent Rayleigh–Bénard convection. Rev. Mod. Phys. 81, 503537.Google Scholar
Busse, F. 1979 The optimum theory of turbulence. Adv. Appl. Mech. 18, 77121.Google Scholar
Busse, F. H. 1970 Bounds for turbulent shear flows. J. Fluid Mech. 41 (1), 219240.Google Scholar
Chuffrut, A., Nobili, C. & Otto, F.2014 Bounds on Nusselt number at finite Prandtl number; Preprint arXiv:1412.4812.Google Scholar
Constantin, P. & Doering, C. R. 1995 Variational bounds on energy dissipation in incompressible flows. II. Channel flow. Phys. Rev. E 51, 31923198.Google Scholar
Doering, C. R. & Constantin, P. 1994 Variational bounds on energy dissipation in incompressible flows: shear flow. Phys. Rev. E 49, 40874099.Google Scholar
Doering, C. R. & Constantin, P. 1996 Variational bounds on energy dissipation in incompressible flows. III. Convection. Phys. Rev. E 53, 59575981.Google Scholar
Doering, C. R. & Constantin, P. 1998 Bounds for heat transport in a porous layer. J. Fluid Mech. 376, 263296.Google Scholar
Frisch, U. 1995 Turbulence. Cambridge University Press, (the legacy of A. N. Kolmogorov).Google Scholar
Hassanzadeh, P., Chini, G. P. & Doering, C. R. 2014 Wall to wall optimal transport. J. Fluid Mech. 751, 627662.Google Scholar
Hewitt, D. R., Neufeld, J. A. & Lister, J. R. 2012 Ultimate regime of high Rayleigh number convection in a porous medium. Phys. Rev. Lett. 108, 224503.Google Scholar
Hopf, E. 1941 Ein allgemeiner Endlichkeitssatz der Hydrodynamik. Math. Ann. 117, 764775.Google Scholar
Howard, L. N. 1972 Bounds on flow quantities. Annu. Rev. Fluid Mech. 4 (1), 473494.CrossRefGoogle Scholar
Keller, J. B., Rubenfeld, L. A. & Molyneux, J. E. 1967 Extremum principles for slow viscous flows with applications to suspensions. J. Fluid Mech. 30 (1), 97125.Google Scholar
Kerswell, R. R. 1998 Unification of variational principles for turbulent shear flows: the background method of Doering–Constantin and the mean-fluctuation formulation of Howard–Busse. Physica D 121 (1–2), 175192.Google Scholar
Lathrop, D. P., Fineberg, J. & Swinney, H. L. 1992 Transition to shear-driven turbulence in Couette–Taylor flow. Phys. Rev. A 46, 63906405.Google Scholar
Malkus, W. V. R. 1954 The heat transport and spectrum of thermal turbulence. Proc. R. Soc. Lond. A 225 (1161), 196212.Google Scholar
Nicodemus, R., Grossmann, S. & Holthaus, M. 1997 Improved variational principle for bounds on energy dissipation in turbulent shear flow. Physica D 101 (1–2), 178190.Google Scholar
Otto, F. & Seis, C. 2011 Rayleigh–Bénard convection: improved bounds on the Nusselt number. J. Math. Phys. 52 (8), 083702,1–24.CrossRefGoogle Scholar
Petrov, N. P., Lu, L. & Doering, C. R. 2005 Variational bounds on the energy dissipation rate in body-forced shear flow. J. Turbul. 6, p. N17, http://dx.doi.org/10.1080/14685240500228262.Google Scholar
Seis, C. 2013 Laminar boundary layers in convective heat transport. Commun. Math. Phys. 324 (3), 9951031.Google Scholar
Serrin, J. 1959 Mathematical principles of classical fluid mechanics. In Fluid Dynamics I/Strömungsmechanik I (ed. Truesdell, C.), Encyclopedia of Physics/Handbuch der Physik, vol. 3/8/1, pp. 125263. Springer.Google Scholar
Whitehead, J. P. & Doering, C. R. 2011 Ultimate state of two-dimensional Rayleigh–Bénard convection between free-slip fixed-temperature boundaries. Phys. Rev. Lett. 106, 244501.CrossRefGoogle ScholarPubMed