Hostname: page-component-7c8c6479df-xxrs7 Total loading time: 0 Render date: 2024-03-26T18:05:54.674Z Has data issue: false hasContentIssue false

Templated grain growth and piezoelectric properties of 〈001〉-textured PIN–PMN–PT ceramics

Published online by Cambridge University Press:  27 July 2015

Dan-dan Wei
Affiliation:
Electronic Materials Research Laboratory & State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an 710049, Shaanxi, China
Qi-bin Yuan
Affiliation:
Electronic Materials Research Laboratory & State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an 710049, Shaanxi, China
Gao-qun Zhang
Affiliation:
Electronic Materials Research Laboratory & State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an 710049, Shaanxi, China
Hong Wang*
Affiliation:
Electronic Materials Research Laboratory & State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an 710049, Shaanxi, China
*
a)Address all correspondence to this author. e-mail: hwang@mail.xjtu.edu.cn
Get access

Abstract

The 〈001〉-textured 36Pb(In1/2Nb1/2)O3–30Pb(Mg1/3Nb2/3)O3–34PbTiO3 (36PIN–30PMN–34PT) ceramics were successfully prepared by the templated grain growth method using BaTiO3 (BT) templates with an average edge length of 10 μm and a thickness of about 0.5 μm. The highest Lotgering factor of 95% has been achieved for the textured ceramics with 5 wt% BT templates sintered at 1240 °C. The Curie temperature (TC) and dielectric constant (εr) of the textured 36PIN–30PMN–34PT ceramics were 225 °C and 2850, respectively. The piezoelectric constant d33 of the textured samples was 780 pC/N and almost 2 times higher than that of random 36PIN–30PMN–34PT samples. The planar mode electromechanical coupling coefficient kp was 59% for the textured samples. Unipolar strain-field measurements for the textured ceramics exhibited 0.34% strain at 4 kV/mm.

Type
Articles
Copyright
Copyright © Materials Research Society 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Li, F., Zhang, S.J., Xu, Z., Wei, X.Y., Luo, J., and Shrout, T.R.: Electromechanical properties of tetragonal Pb(In1/2Nb1/2)O3–Pb(Mg1/3Nb2/3)O3–PbTiO3 ferroelectric crystals. J. Appl. Phys. 107(5), 054107 6pp (2010).Google Scholar
Zhang, S.J., Luo, J., Hackenberger, W., Sherlock, N.P., Meyer, R.J. Jr., and Shrout, T.R.: Electromechanical characterization of Pb(In1/2Nb1/2)O3–Pb(Mg1/3Nb2/3)O3–PbTiO3 crystals as a function of crystallographic orientation and temperature. J. Appl. Phys. 105(10), 104506 6pp (2009).Google Scholar
Li, F., Zhang, S.J., Lin, D.B., Luo, J., Xu, Z., Wei, X.Y., and Shrout, T.R.: Electromechanical properties of Pb(In1/2Nb1/2)O3–Pb(Mg1/3Nb2/3)O3–PbTiO3 single crystals. J. Appl. Phys. 109(1), 014108 6pp (2011).CrossRefGoogle Scholar
Sun, E.W., Zhang, R., Wu, F.M., and Cao, W.W.: Complete matrix properties of [001]c and [011]c poled 0.33Pb(In1/2Nb1/2)O3–0.38Pb(Mg1/3Nb2/3)O3–0.29PbTiO3 single crystals. J. Alloys Compd. 553, 267269 (2013).CrossRefGoogle Scholar
Wang, Y.L., Sun, E.W., Song, W., Li, W.C., Zhang, R., and Cao, W.W.: Improved thermal stability of (001)c poled 0.24Pb(In1/2Nb1/2)O3–0.47Pb(Mg1/3Nb2/3)O3–0.29PbTiO3 single crystal with manganese doping. J. Alloys Compd. 601, 154157 (2014).Google Scholar
Messing, G.L., Trolier-Mckinstry, S., Sabolsky, E.M., Duran, C., Kwon, S., Brahmaroutu, B., Park, P., Yilimaz, H., Rehrig, P.W., Eitel, K.B., Suvaci, E., Seabaugh, M., and Oh, K.S.: Tempalted grain growth of textured piezoelectric ceramics. Crit. Rev. Solid State Mater. Sci. 29(2), 4596 (2004).Google Scholar
Okazaki, K., Igarashi, H., Nagata, K., Yamamoto, T., and Tashiro, S.: Processing, microstructure, and properties of grain-oriented ferroelectric ceramics. IEEE Trans. Ultrason. Ferroelectrics Freq. Contr. 33, 328337 (1996).Google Scholar
Horn, J.A., Zhang, S.C., Selvaraj, U., Messing, G.L., and Trolier-Mckinstry, S.: Templated grain growth of textured bismuth titanate. J. Am. Ceram. Soc. 82(4), 921926 (1999).Google Scholar
Satio, Y., Takao, H., Tani, T., Nonoyama, T., Takatori, K., and Homma, T.: Lead-free piezoceramics. Nature 432, 8487 (2004).Google Scholar
Kwon, S.T., Sabolsky, E.M., Messing, G.L., and Trolier-McKinstry, S.: High strain, <001> textured 0.675Pb(Mg1/3Nb2/3)O3–0.325PbTiO3 ceramics: Templated grain growth and piezoelectric properties. J. Am. Ceram. Soc. 88(2), 312317 (2005).CrossRefGoogle Scholar
Brosnan, K.H., Messing, G.L., Meyer, R.J., and Vaudin, M.D.: Texture measurements in <001> fiber-oriented PMN-PT. J. Am. Ceram. Soc. 89(6), 19651971 (2006).CrossRefGoogle Scholar
Amorin, H., Ricote, J., Holc, J., Kosec, M., and Alguero, M.: Homogeneous template grain growth of 0.65Pb(Mg1/3Nb2/3)O3–0.35PbTiO3 from nanocrystalline powders obtained by mechanochemical activation. J. Eur. Ceram. Soc. 28(14), 27552763 (2008).Google Scholar
Sato, T. and Kimura, T.: Preparation of <111> -textured BaTiO3 ceramics by template grain growth method using novel template particles. Ceram. Int. 34(4), 757760 (2008).CrossRefGoogle Scholar
Brosnan, K.H., Poterala, S.F., Meyer, R.J., Misture, S., and Messing, G.L.: Templated grain growth of <001> textured PMN-28PT using SrTiO3 templates. J. Am. Ceram. Soc. 92(S1), S133S139 (2009).CrossRefGoogle Scholar
Zhao, W., Ya, J., Xin, Y., Lie, L.E., Zhao, D., and Zhou, H.P.: Fabrication of Na0.5Bi0.5TiO3–BaTiO3-textured ceramics templated by plate-like Na0.5Bi0.5TiO3 particles. J. Am. Ceram.Soc. 92(7), 16071609 (2009).Google Scholar
Sabolsky, E.M., Maldonado, L., Seabaugh, M.M., and Swartz, S.L.: Textured–Ba(Zr,Ti)O3 piezoelectric ceramics fabricated by template grain growth (TGG). J. Electroceram. 25(1), 7784 (2010).Google Scholar
Poterala, S., McKinstry, S.T., Meyer, R.J., and Messing, G.L.: Processing, texture quality and piezoelectric properties of <001> textured (1−x)Pb(Mg1/3Nb2/3)–xPbTiO3 ceramics. J. Appl. Phys. 110(1), 014105 (2011).CrossRefGoogle Scholar
Bai, W.F., Shen, B., Fu, F., and Zhai, J.W.: Fabrication and electrical properties of Ba(Zr,Ti)O3 textured ceramics by templated grain growth. Jpn. J. Appl. Phys. 51(1), 015503 (2012).CrossRefGoogle Scholar
Poterala, S.F., Meyer, R.J., and Messing, G.L.: Low-field dynamic magnetic alignment and templated grain growth of diamagnetic PMN-PT ceramics. J. Mater. Res. 28(21), 29602969 (2013).CrossRefGoogle Scholar
Kim, H.J., Krane, M.J.M., Trumble, K.P., and Bowman, K.J.: Analytical fluid flow models for tape casting. J. Am. Ceram. Soc. 89(9), 27692775 (2006).Google Scholar
Watanabe, H., Kimura, T., and Yamaguchi, T.: Particle orientation during tape casting in the fabrication of grain-oriented bismuth titanate. J. Am. Ceram. Soc. 72(2), 289293 (1989).Google Scholar
Yasuharu, H., Yohachi, Y., Hideya, S., and Noboru, I.: Dielectric and piezoelectric properties of Pb(In1/2Nb1/2)O3–Pb(Mg1/3Nb2/3)O3–PbTiO3 ternary ceramic materials near morphotropic phase boundary. Jpn. J. Appl. Phys. 41(1), 535538 (2003).Google Scholar
Pham-Thi, M., Augier, C., Dammak, H., and Gaucher, P.: Fine grain ceramics of PIN-PT, PIN-PMN-PT and PMN-PT systems: Drift of the dielectric constant under high electric field. Ultrosonics 44, 627631 (2006).Google Scholar
Lin, D.B., Li, Z.R., Li, F., Xu, Z., and Yao, X.: Characterization and piezoelectric thermal stability of PIN-PMN-PT ternary ceramics near the morphotropic phase boumdary. J. Alloys Compd. 489(1), 115118 (2010).CrossRefGoogle Scholar
Wang, D.W., Cao, M.S., and Zhang, S.J.: Phase diagram and properties of Pb(In1/2Nb1/2)O3–Pb(Mg1/3Nb2/3)O3–PbTiO3 polycrystalline ceramics. J. Eur. Ceram. Soc. 32(2), 433439 (2012).CrossRefGoogle Scholar
Ding, X.Y., Shen, B., Zhai, J.W., Xu, Z.K., Fu, F., Zhang, J.J., and Yao, X.: Preparation and piezoelectric properties of (h00)-orientated BaTiO3 ceramics by tape casting. Ferroelectrics 401(1), 3035 (2010).CrossRefGoogle Scholar
Kimura, T. and Miyazaki, C.: Effect of matrix particle size on texture development in SrBi4Ti4O15 made by template grain growth. J. Electroceram. 19(4), 281285 (2007).Google Scholar
Richter, T., Denneler, S., and Schuh, C.: Textured PMN-PT and PMN-PZT. J. Am. Ceram. Soc. 91(3), 929933 (2008).CrossRefGoogle Scholar
Yan, Y.K., Cho, K.H., and Priya, S.: Templated grain growth of <001>-textured 0.675Pb(Mg1/3Nb2/3)O3–0.325PbTiO3 piezoelectric ceramics for magnetic field sensors. J. Am. Ceram. Soc. 94(6), 17841793 (2011).Google Scholar