Hostname: page-component-7c8c6479df-fqc5m Total loading time: 0 Render date: 2024-03-28T13:28:07.570Z Has data issue: false hasContentIssue false

Marine cave biota of the Tarkhankut Peninsula (Black Sea, Crimea), with emphasis on sponge taxonomic composition, spatial distribution and ecological particularities

Published online by Cambridge University Press:  20 July 2015

Alexander V. Ereskovsky*
Affiliation:
Mediterranean Institute of Marine and Terrestrial Biodiversity and Ecology (IMBE), Aix Marseille University, CNRS, IRD, Université d’Avignon, Station marine d'Endoume, rue de la Batterie des Lions, 13007 Marseille, France Biological Faculty, Saint-Petersburg State University, 199034 Universitetskaya nab. 7/9, St. Petersburg, Russia
Oleg A. Kovtun
Affiliation:
Hydrobiology and General Ecology Department, Odessa National I. I. Mechnikov University, Marine Research Station, st. Dvoryanska, 2, Odessa, 65026, Ukraine
Konstantin K. Pronin
Affiliation:
Physical and Marine Geology Department, Odessa National I. I. Mechnikov University, st. Dvoryanska, 2, Odessa, 65026, Ukraine
*
Correspondence should be addressed to:A.V. Ereskovsky, Mediterranean Institute of Marine and Terrestrial Biodiversity and Ecology (IMBE), Aix Marseille University, CNRS, IRD, Station marine d'Endoume, rue de la Batterie des Lions, 13007 Marseille, France email: alexander.ereskovsky@imbe.fr

Abstract

The main objectives of this study are the establishment of a detailed description of five semi-submerged and shallow-water marine caves from the Tarkhankut Peninsula (Crimea), their biological characteristics with particular attention to species composition, and the distribution of sponge assemblages in these caves. Three semi-submerged and two submerged caves with lengths of 9–131 m and volumes of 61–3060 m3 have been investigated. All of them are karst-abrasive or karst in origin. In the investigated caves, we inventoried seven sponge species. All were recorded species of Porifera belong to the class Demospongiae and have previously been recorded also in adjacent open sea waters. These species are tolerant to different hydrological conditions, mostly temperature and salinity. Some of them have wide geographic distribution. The species composition of sponges from the shallow water caves of Crimea is quite different from the sponge composition in Mediterranean caves. This could be due to the geographic isolation of the Black Sea and the differences in the hydro-chemical parameters of the milieu (water salinity in Tarkhankut is 18–21‰).

Type
Research Article
Copyright
Copyright © Marine Biological Association of the United Kingdom 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Akimov, I.A. (ed.) (2009) Chervona Kniga Ukraini. Tvarinnii Svit. (Red Book Ukraine: Animals). Kiev: Global Consulting, 622 pp.Google Scholar
Arko-Pijevac, M., Benac, C., Kovacic, M. and Kirincic, M. (2001) A submarine cave at the Island of Krk (North Adriatic Sea). Natura Croatia 10, 163184.Google Scholar
Bačescu, M., Muller, G. and Gomoiu, M.-T. (1971) Cercetari de ecologie bentala in Marea Neagra – analiza cantitativa si comparata a faunel bentale Pontice. Bucuresti. Romanian Academy of Sciences Publications 4, 1352.Google Scholar
Bakran-Petricioli, T., Vacelet, J., Zibrowius, H., Petricioli, D., Chevaldonné, P. and Rada, T. (2007) New data on the distribution of the ‘deep-sea’ sponges Asbestopluma hypogea and Oopsacas minuta in the Mediterranean Sea. Marine Ecology 28 (Suppl. 1), 1023.CrossRefGoogle Scholar
Balduzzi, A., Bianchi, C.N., Boero, F., Cattaneo Vietti, R., Pansini, M. and Sarà, M. (1989) The suspension-feeder communities of a Mediterranean sea cave. Scientia Marina 53, 387395.Google Scholar
Ben Mustapha, K., Chaouh, M. and Dhahbi, L. (2007) Mise à jour de la nomenclature des demosponges de Tunisie. Bulletin de l'Institut Nationale Science et Technologie Mer de Salammbô 34, 6167.Google Scholar
Benedetti-Cecchi, L., Airoldi, L., Abbiati, M. and Cinelli, F. (1996) Exploring the causes of spatial variation in an assemblage of benthic invertebrates from a submarine cave with sulphur springs. Journal of Experimental Marine Biology and Ecology 208, 153168.CrossRefGoogle Scholar
Bianchi, C.N., Cattaneo-Vietti, R., Cinelli, F., Morri, C. and Pansini, M. (1996) Lo studio biologicao delle grotte sottomarine del Mediterraneo: conoscenze attuali e prospettive. Bollettino dei Musei e degli Istituti Biologici dell'Università di Genova 60–61, 4169.Google Scholar
Boxshall, G.A. and Jaume, D. (2000) Discoveries of cave misophrioids (Crustacea: Copepoda) shed new light on the origin of anchialine cave faunas. Zoologischer Anzeiger 239, 119.Google Scholar
Buss, L.W. and Jackson, J.B.C. (1981) Planktonic food availability and suspension-feeder abundance: evidence of in situ depletion. Journal of Experimental Marine Biology and Ecology 49, 151156.CrossRefGoogle Scholar
Bussotti, S., Denitto, F., Guidetti, P. and Belmonte, G. (2002) Fish assemblages in shallow marine caves of the Salento Peninsula (Southern Apulia, SE Italy). Marine Ecology 23, 1120.CrossRefGoogle Scholar
Calado, R., Chevaldonné, P. and dos Santos, A. (2004) A new species of the deep-sea genus Bresilia (Crustacea: Decapoda: Bresiliidae) discovered from a shallow-water cave in Madeira. Journal of the Marine Biological Association of the United Kingdom 84, 191199.CrossRefGoogle Scholar
Chevaldonné, P. and Lejeusne, C. (2003) Regional warming-induced species shift in north-west Mediterranean marine caves. Ecology Letters 6, 371379.CrossRefGoogle Scholar
Cinelli, F., Fresi, E., Mazzella, L., Pansini, M., Pronzato, R. and Svoboda, A. (1977) Distribution of benthic phyto- and zoocoenoses along a light gradient in a superficial marine cave. In Keegan, B.F., Ceidigh, P.O. and Boaden, P.J.S. (eds) Biology of benthic organisms. Oxford: Pergamon Press, pp. 173183.CrossRefGoogle Scholar
Convention on the Conservation of European Wildlife and Natural Habitats (1979) http://conventions.coe.int/Treaty/en/Treaties/Html/104.htm.Google Scholar
Corriero, G., Liaci, L.S., Ruggiero, D. and Pansini, M. (2000) The sponge community of a semi-submerged Mediterranean cave. Marine Ecology 21, 8596.CrossRefGoogle Scholar
Cruz, T. (2002) Esponjas marinas de Canarias. Tenerife: Consejería de Política Territorial y Medio Ambiente del Gobierno de Canarias, 260 pp.Google Scholar
Czerniavsky, V. (1880) Spongiae littorales Pontis Euxini et Maris Caspii. Bulletin de la Société impériale des naturalistes de Moscou 54, 88128.Google Scholar
Dark Habitats Action Plan (2015) Action Plan for the conservation of habitats and species associated with seamounts, underwater caves and canyons, aphotic hard beds and chemo-synthetic phenomena in the Mediterranean Sea. UNEP-MAP-RAC/SPA. Ed. RAC/SPA, Tunis.Google Scholar
Dumont, H.J. (ed.) (1999) Black Sea red data book. New York, NY: United Nations Office for Project Services, GEF-BSEP/UN, 413 pp.Google Scholar
Ereskovsky, A.V. and Kovtun, O.A. (2013) Ukraine's new invasive sponge species, Clathria (Microciona) cleistochela (Topsent, 1925) (Porifera: Demospongiae, Poecilosclerida, Microcionidae) from the submarine caves of western Crimea (Black Sea, Tarkhankut). Marine Ecology Journal 12, 104. [In Russian.]Google Scholar
Fichez, R. (1990) Absence of redox potential discontinuity in dark submarine cave sediments as evidence of oligotrophic conditions. Estuarine, Coastal and Shelf Science 31, 875881.CrossRefGoogle Scholar
Fichez, R. (1991a) Composition and fate of organic matter in submarine cave sediments; implications for the biogeochemical cycle of organic carbon. Oceanologica Acta 14, 369377.Google Scholar
Fichez, R. (1991b) Benthic oxygen uptake and carbon cycling under aphotic and resource-limiting conditions in a submarine cave. Marine Biology 110, 137143.CrossRefGoogle Scholar
Gerovasileiou, V. and Voultsiadou, E. (2012) Marine caves of the Mediterranean sea: a sponge biodiversity reservoir within a biodiversity hotspot. PLoS ONE 7, e39873. doi: 10.1371/journal.pone.0039873.CrossRefGoogle ScholarPubMed
Gili, J.M., Riera, T. and Zabala, M. (1986) Physical and biological gradients in a submarine cave on the Western Mediterranean coast (north-east Spain). Marine Biology 90, 291297.CrossRefGoogle Scholar
Gomoiu, M.T. and Skolka, M. (1998) Evaluation of marine and coastal biological diversity at the Romanian littoral – a workbook for the Black Sea ecological diversity. Analele Universitatii “Ovidius” Constanta. Universitatea “Ovidius” Constanta 2, 1167.Google Scholar
Grebelniy, S.D. and Kovtun, O.A. (2013) A new record of the sea anemone Sagartia elegans (Dalyell, 1848) (Anthozoa: Sagartiidae) capable of clonal reproduction from the Black Sea. Russian Journal of Marine Biology 39, 1723.Google Scholar
Harmelin, J.-G. (1997) Diversity of bryozoans in a Mediterranean sublittoral cave with bathyal-like conditions: role of dispersal processes and local factors. Marine Ecology Progress Series 153, 139152.CrossRefGoogle Scholar
Harmelin, J.-G. (2000) Le corail rouge de Méditerranée: quelques aspects de sa biologie et de son écologie. In Morel, J.-P., Rondi-Costanzo, C. and Ugolini, D. (eds) Corallo di ieri, corallo di oggi. Bari: Edipuglia, pp. 1120.Google Scholar
Harmelin, J.-G. and Vacelet, J. (1997) Clues to deep-sea biodiversity in a nearshore cave. Vie et Milieu 47, 351354.Google Scholar
Harmelin, J.-G., Vacelet, J. and Vasseur, P. (1985) Les grottes sous-marines obscures: un milieu extreme et un remarquable biotope refuge. Téthys 11, 214229.Google Scholar
Hart, C.W. Jr, Manning, R.B. and Iliffe, T.M. (1985) The fauna of Atlantic marine caves: evidence of dispersal by sea floor spreading while maintaining ties to deep waters. Proceedings of the Biological Society of Washington 98, 288292.Google Scholar
Illffe, T.M., Wilkens, H., Parzefall, J. and Williams, D. (1984) Marine lava cave fauna: composition, biography, and origins. Science 225, 309311.CrossRefGoogle Scholar
Kaminskaya, L.D. (1961) New facts concerning the fauna of Black Sea sponges. Dopovidi Akademii Nauk ukraini RSR 8, 10911093.Google Scholar
Kaminskaya, L.D. (1966) An addition to the sponge fauna of the Black Sea. Zoologicheskii Zhurnal 65, 928929.Google Scholar
Kaminskaya, L.D. (1967) Some patterns of distribution of species of sponges in the Black Sea. Zoologicheskii Zhurnal 64, 327329. [In Russian.]Google Scholar
Kaminskaya, L.D. (1968) Klass gubok – Porifera. In Vodjanitskij, V.V. (ed.) Opredelitel fauny Chernogo I Azovskogo morey (A key to Black Sea and Azov Sea fauna), Vol. 1. Kiev: Naukova dumka, pp. 3555. [In Russian.]Google Scholar
Kiseleva, G.A. and Kostenko, N.S. (2004) Phylum Porifera. In Karadag: hydrobiological investigations. Proceedings of Conference, Vol. 2. Simpheropol: Sonat, pp. 322–323. [In Russian.]Google Scholar
Kovtun, O.A. (2008) New to the Black sea anemone species Sagartia sp. (Cnidaria: Anthozoa, Actiniaria, Sagartiidae) from underwater caves of the Western Crimea. Morskoj ecologicheskij zhurnal 7, 60 (in Russian).Google Scholar
Kovtun, O.A. (2010) A new invasive sea anemone species from family Sagartiidae (Cnidaria: Anthozoa, Actiniaria) in Odessa Gulf (the Black Sea). Morskoj ecologicheskij zhurnal 9, 72. [In Russian.]Google Scholar
Kovtun, O.A. (2012) The first finding of Gammogobius steinitzi Bath, 1971 (Actinopterygii, Perciformes, Gobiidae) in marine caves of Western Crimea (the Black Sea) (Preliminary report). Morskoj ecologicheskij zhurnal 11, 56. [In Russian.]Google Scholar
Kovtun, O.A. and Makarov, Y.N. (2008) The features of biology and morphology of the rare Black Sea shrimp Lysmata seticaudata (Risso, 1816) (Decapoda, Natantia, Hippolytidae). Vestnik zoologii 42, 4955. [In Russian.]Google Scholar
Kovtun, O.A. and Makarov, Y.N. (2011) The features of biology and morphology of the rare Black Sea shrimp Palaemon serratus Pennant, 1777 (Decapoda: Palaemonidae) from karst caves and underwater caves Tarkhankut Peninsula (Western Crimea). Morskoj ecologicheskij zhurnal 10, 2632. [In Russian.]Google Scholar
Kovtun, O.A. and Petriashev, V.V. (2012) The first record of the rare mysids Hemimysis serrata Bacescu, 1938 (Crustacea, Malacostraca, Mysidae) in the underwater cave of the Western Crimea (Tarkhankut Peninsula, the Black Sea). Vestnik zoologii 46, 394. [In Russian.]Google Scholar
Kovtun, O.A. and Pronin, K.K. (2011a) Marine caves of the Ukrainian coast (problems, history of research, biology). In 2nd International Correspondence Scientific and Practical Conference “Speleology and speleostology”, 24–25 November, pp. 33–38. [In Russian.]Google Scholar
Kovtun, O.A. and Pronin, K.K. (2011b) Morphological and biological characteristics of underwater cave Tarzanka (Tarkhankut Peninsula, Malyi Atlesh). Speleology and Karstology 6, 5366. [In Russian.]Google Scholar
Kudelin, N. (1910) Zur Frage Spongien des Schwarzen Meeres. Zapiski Novorossijskogo Obshestva Estestvoispitatelej 35, 140.Google Scholar
de Laubenfels, M.W. (1951) A collection of sponges from the Black Sea. Archiv fur Hydrobiologie 45, 213216.Google Scholar
Lejeusne, C. and Chevaldonné, P. (2005) Population structure and life history of Hemimysis margalefi (Crustacea: Mysidacea), a ‘thermophilic’ cave-dwelling species benefiting from the warming of the NW Mediterranean. Marine Ecology Progress Series 287, 189199.CrossRefGoogle Scholar
Lejeusne, C. and Chevaldonné, P. (2006) Brooding crustaceans in a highly fragmented habitat: the genetic structure of Mediterranean marine cave-dwelling mysid populations. Molecular Ecology 15, 41234140.CrossRefGoogle Scholar
Lowe, J.J. and Walker, M.J.S. (1997) Reconstructing quaternary environments, 2nd edn.London: Addison-Wesley-Longman.Google Scholar
Manconi, R., Cadeddu, B., Ledda, F. and Pronzato, R. (2013) An overview of the Mediterranean cave-dwelling horny sponges (Porifera, Demospongiae). ZooKeys 281, 168.CrossRefGoogle Scholar
Manconi, R. and Serusi, A. (2008) Rare sponges from marine caves: discovery of Neophrissospongia nana nov. sp. (Demospongiae, Corallistidae) from Sardinia with an annotated checklist of Mediterranean lithistids. ZooKeys 4, 7187.CrossRefGoogle Scholar
Manconi, R., Serusi, A. and Pisera, A. (2006) Mediterranean ‘Lithistids’ sponges: discovery of Aciculites mediterranea sp. n. (Porifera, Demospongiae) in dark marine caves of Sardinia. Journal of the Marine Biological Association of the United Kingdom 86, 691698.CrossRefGoogle Scholar
Marti, R., Uriz, M-J., Ballesteros, E. and Turon, X. (2004) Benthic assemblages in two Mediterranean caves: species diversity and coverage as a function of abiotic parameters and geographic distance. Journal of the Marine Biological Association of the United Kingdom 84, 557572.CrossRefGoogle Scholar
Ott, J.A. and Svoboda, A. (1976) Sea caves as model systems for energy flow studies in primary hard bottom communities. Pubblicazioni della Stazione Zoologica di Napoli I: Marine Ecology 40, 478485.Google Scholar
Pansini, M. and Longo, C. (2003) A review of the Mediterranean Sea sponge biogeography with, in appendix, a list of the demosponges hitherto recorded from this sea. Biogeographia 24, 5990.Google Scholar
Pansini, M. and Pronzato, R. (1982) Distribuzione ed ecologia dei Poriferi nella grotta di Mitigliano (Penisola sorrentina). Bollettino dei Musei e degli Istituti biologici dell'Università di Genova 50, 287293.Google Scholar
Pérès, J.-M. and Picard, J. (1949) Notes sommaires sur le peuplement des grottes sous-marines de la région de Marseille. Comptes Rendus Sommaires des Séances de la Société de Biogéographie 26, 4246.Google Scholar
Petrjachev, V.V. and Kovtun, O.A. (2011) Mysids (Crustacea: Mysida) of caves, grottos and coastal lakes Tarhankut Peninsula (western Crimea). Vestnik ONU 16, 4961. [In Russian.]Google Scholar
Pisera, A. and Vacelet, J. (2010) Lithistid sponges from submarine caves in the Mediterranean: taxonomy and affinities. Scientia Marina 75, 1740.CrossRefGoogle Scholar
Popov, V.F. and Shutov, Y.I. (1974) Karst cavities of Tarkhankut Peninsula coastline in Crimea. Collected book “Caves” 14–15, 99104. [In Russian.]Google Scholar
Pouliquen, L. (1972) Les spongiaires des grottes sous marines de la région de Marseille: écologie et systématique. Téthys 3, 717758.Google Scholar
Pronin, К.К. (1989) Grottes of the island Snake. Dep. UkrNIINTI: OSU. – GASNTI 38.63.17 from 5.11.1989, 114.Google Scholar
Pronin, К.К. (2011) Sea grottoes of the Northern area of the Tarkhankut. Speleology and Karstology 6, 1224.Google Scholar
Ramoino, P., Ledda, F.D., Ferrando, S., Gallus, L., Bianchini, P., Diaspro, A., Fato, M., Tagliafierro, G. and Manconi, R. (2011) Metabotropic γ-aminobutyric acid (GABAB) receptors modulate feeding behavior in the calcisponge Leucandra aspera. Journal of Experimental Zoology. Pt. A, Ecological Genetics and Physiology 315, 132140.CrossRefGoogle ScholarPubMed
Riedl, R. (1966) Biologie der Meereshölhlen. Hamburg: Paul Parey.Google Scholar
Shumeyko, A. (1998) Crimea: Sudak, Novy Svet, Cape Caves: Cave of Kipchak-2. Svet 2, 1415.Google Scholar
Simpson, T.P. (1984) The sponge cell biology. Berlin: Springer, pp. 662.CrossRefGoogle Scholar
Skolka, M. and Gomoiu, M.T. (2004) Specii_ invazive în Marea Neagră. Impactul ecologic al pătrunderii de noi specii în ecosistemele acvatice. Constanţa: Ovidius University Press.Google Scholar
Swartschewsky, B.A. (1905) Materialui k faune gubok Chernago moria (Monaxonida). (Beitrag zur Kenntnis der Schwamm-Fauna des Schwarzen Meeres.). Zapiski Kievskogo Obschchestva 20, 148.Google Scholar
Terentiev, A.S. (1998) Species richness and dominant species of macrobenthos in different biotopes of Black Sea region of Kerch strait. Proceedings of the Southern Scientifiс Research Institute of Marine Fisheries & Oceanography 44, 100110. [In Russian.]Google Scholar
Topaloğlu, B. and Evcen, A. (2014) Updated checklist of sponges (Porifera) along the coasts of Turkey. Turkish Journal of Zoology 38, 665676.CrossRefGoogle Scholar
Topsent, E. (1893) Nouvelle série de diagnoses d’éponges de Roscoff et de Banyuls. Archives de Zoologie expérimentale et générale 3, 3343.Google Scholar
Vacelet, J. (1979) Une éponge tétractinellide nouvelle des grottes sous-marines de la Jamaïque, associée à des membranes étrangères. Bulletin du Muséum National d'Histoire Naturelle, Paris 1, 3339.CrossRefGoogle Scholar
Vacelet, J. (1996) Deep sea sponges in a Mediterranean cave. Deep-sea and extreme shallow-water habitats: affinities and adaptations. Biosystems Ecology Series 11, 299312.Google Scholar
Vacelet, J. and Boury-Esnault, N. (1995) Carnivorous sponges. Nature 373, 333335.CrossRefGoogle Scholar
Vacelet, J., Boury-Esnault, N. and Harmelin, J.-G. (1994) Hexactinellid Cave, a unique deep-sea habitat in the scuba zone. Deep Sea Research Part I Oceanography Research Papers 41, 965973.CrossRefGoogle Scholar
Van Soest, R.W.M., Boury-Esnault, N., Hooper, J.N.A., Rützler, K., de Voogd, N.J. et al. (2015) World Porifera database. http://www.marinespecies.org/porifera.Google Scholar
Vorobieva, L.V., Kovtun, O.A., Kulakova, I.I., Garlitskaya, L.A., Bomdarenko, A.S. and Ribalko, A.A. (2012) Invertebrate animals of the underwater caves and coastal grottos of the Tarkhankut Peninsula (Western Crimea). Vestnik ONU 17, 7085. [In Russian.]Google Scholar
Voultsiadou, E. (2005) Demosponge distribution in the eastern Mediterranean: a NW–SE gradient. Helgoland Marine Research 59, 237251.CrossRefGoogle Scholar
Zabala, M., Riera, T., Gili, J.M., Barange, M., Lobo, A. and Penuelas, J. (1989) Water flow, trophic depletion, and benthic macrofauna impoverishment in a submarine cave from Western Mediterranean. PSZNI. Marine Ecology 10, 271287.CrossRefGoogle Scholar
Zaitsev, Yu. and Mamaev, V. (1997) Marine biological diversity in the black sea: a study of change and decline. New York, NY: United Nations Publications.Google Scholar