Hostname: page-component-7c8c6479df-24hb2 Total loading time: 0 Render date: 2024-03-29T08:35:18.684Z Has data issue: false hasContentIssue false

Mechanisms of plasma disruption and runaway electron losses in the TEXTOR tokamak

Published online by Cambridge University Press:  13 July 2015

S. S. Abdullaev*
Affiliation:
Forschungszentrum Jülich GmbH, Institut für Energie- und Klimaforschung – Plasmaphysik, D-52425 Jülich, Germany
K. H. Finken
Affiliation:
Institut für Laser- und Plasmaphysik, Heinrich-Heine Universität Düsseldorf, Germany
K. Wongrach
Affiliation:
Institut für Laser- und Plasmaphysik, Heinrich-Heine Universität Düsseldorf, Germany
M. Tokar
Affiliation:
Forschungszentrum Jülich GmbH, Institut für Energie- und Klimaforschung – Plasmaphysik, D-52425 Jülich, Germany
H. R. Koslowski
Affiliation:
Forschungszentrum Jülich GmbH, Institut für Energie- und Klimaforschung – Plasmaphysik, D-52425 Jülich, Germany
O. Willi
Affiliation:
Institut für Laser- und Plasmaphysik, Heinrich-Heine Universität Düsseldorf, Germany
L. Zeng
Affiliation:
Institute of Plasma Physics, Chinese Academy of Sciences, 230031 Hefei, China
*
Email address for correspondence: s.abdullaev@fz-juelich.de

Abstract

Based on the analysis of data from the numerous dedicated experiments on plasma disruptions in the TEXTOR tokamak the mechanisms of the formation of runaway electron (RE) beams and their losses are proposed. The plasma disruption is caused by a strong stochastic magnetic field formed due to nonlinearly excited low-mode-number magneto-hydro-dynamics (MHD) modes. It is hypothesized that the RE beam is formed in the central plasma region confined by an intact magnetic surface due to the acceleration of electrons by the inductive toroidal electric field. In the case of plasmas with the safety factor $q(0)<1$ the most stable RE beams are formed by the outermost intact magnetic surface located between the magnetic surface $q=1$ and the closest low-order rational surface $q=m/n>1~(q=5/4,q=4/3,\dots )$. The thermal quench (TQ) time caused by the fast electron transport in a stochastic magnetic field is calculated using the collisional transport model. The current quench (CQ) stage is due to the particle transport in a stochastic magnetic field. The RE beam current is modelled as a sum of a toroidally symmetric part and a small-amplitude helical current with a predominant $m/n=1/1$ component. The REs are lost due to two effects: (i) by outward drift of electrons in a toroidal electric field until they touch the wall and (ii) by the formation of a stochastic layer of REs at the beam edge. Such a stochastic layer for high-energy REs is formed in the presence of the $m/n=1/1$ MHD mode. It has a mixed topological structure with a stochastic region open to the wall. The effect of external resonant magnetic perturbations on RE loss is discussed. A possible cause of the sudden MHD signals accompanied by RE bursts is explained by the redistribution of runaway current during the resonant interaction of high-energetic electron orbits with the $m/n=1/1$ MHD mode.

Type
Research Article
Copyright
© Cambridge University Press 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abdullaev, S. S. 2006 Construction of Mappings for Hamiltonian Systems and their Applications. Springer.Google Scholar
Abdullaev, S. S. 2013 On collisional diffusion in a stochastic magnetic field. Phys. Plasmas 20, 082507.CrossRefGoogle Scholar
Abdullaev, S. S. 2014 Magnetic Stochasticity in Magnetically Confined Fusion Plasmas. Springer.CrossRefGoogle Scholar
Abdullaev, S. S. 2015 Drifts of electron orbits induced by toroidal electric field in tokamaks. Phys. Plasmas 22, 030702.CrossRefGoogle Scholar
Abdullaev, S. S., Finken, K. H. & Spatschek, K. H. 1999 Asymptotical and mapping methods in study of ergodic divertor magnetic field in a toroidal system. Phys. Plasmas 6, 153174.CrossRefGoogle Scholar
Abdullaev, S. S., Finken, K. H., Wongrach, K., Tokar, M., Koslowski, H. R., Willi, O., Zheng, L. & the TEXTOR team 2015 Mechanism of runaway electron formation during plasma disruptions in tokamaks. Phys. Plasmas 22, 040704.CrossRefGoogle Scholar
Bakhtiari, M., Kawano, Y., Tamai, H., Miura, Y., Yoshino, R. & Nishida, Y. 2002 Fast plasma shutdown scenarios in the JT-60U tokamak using intense mixed gas puffing. Nucl. Fusion 42 (10), 11971204.CrossRefGoogle Scholar
Bakhtiari, M., Tamai, H., Kawano, Y., Kramer, G. J., Isayama, A., Nakano, T., Kamiya, Y., Yoshino, R., Miura, Y. & Nishida, Y. 2005 Study of plasma termination using high- $Z$ noble gas puffing in the JT-60U tokamak. Nucl. Fusion 45 (10), 318325.CrossRefGoogle Scholar
Bécoulet, A., Hoang, G. T., Abiteboul, J., Achard, J., Alarcon, T., Alba-Duran, J., Allegretti, L., Allfrey, S., Amiel, S., Ane, J. M., Aniel, T., Antar, G., Argouarch, A., Armitano, A., Arnaud, J., Arranger, D., Artaud, J. F., Audisio, D., Aumeunier, M., Autissier, E., Azcona, L., Back, A., Bahat, A., Bai, X., Baiocchi, B., Balaguer, D., Balme, S., Balorin, C., Barana, O., Barbier, D., Barbuti, A., Basiuk, V., Baulaigue, O., Bayetti, P., Baylard, C., Beaufils, S., Beaute, A., Bécoulet, M., Bej, Z., Benkadda, S., Benoit, F., Berger-By, G., Bernard, J. M., Berne, A., Bertrand, B., Bertrand, E., Beyer, P., Bigand, A., Bonhomme, G., Borel, G., Boron, A., Bottereau, C., Bottollier-Curtet, H., Bouchand, C., Bouquey, F., Bourdelle, C., Bourg, J., Bourmaud, S., Brémond, S., Bribiesca Argomedo, F., Brieu, M., Brun, C., Bruno, V., Bucalossi, J., Bufferand, H., Buravand, Y., Cai, L., Cantone, V., Cantone, B., Caprin, E., Cartier-Michaud, T., Castagliolo, A., Belo, J., Catherine-Dumont, V., Caulier, G., Chaix, J., Chantant, M., Chatelier, M., Chauvin, D., Chenevois, J., Chouli, B., Christin, L., Ciazynski, D., Ciraolo, G., Clairet, F., Clapier, R., Cloez, H., Coatanea-Gouachet, M., Colas, L., Colledani, G., Commin, L., Coquillat, P., Corbel, E., Corre, Y., Cottet, J., Cottier, P., Courtois, X., Crest, I., Dachicourt, R., Dapena Febrer, M., Daumas, C., de Esch, H. P. L., De Gentile, B., Dechelle, C., Decker, J., Decool, P., Deghaye, V., Delaplanche, J., Delchambre-Demoncheaux, E., Delpech, L., Desgranges, C., Devynck, P., Dias Pereira Bernardo, J., Dif-Pradalier, G., Doceul, L., Dong, Y., Douai, D., Dougnac, H., Dubuit, N., Duchateau, J.-L., Ducobu, L., Dugue, B., Dumas, N., Dumont, R., Durocher, A., Durocher, A., Duthoit, F., Ekedahl, A., Elbeze, D., Escarguel, A., Escop, J., Faïsse, F., Falchetto, G., Farjon, J., Faury, M., Fedorzack, N., Féjoz, P., Fenzi, C., Ferlay, F., Fiet, P., Firdaouss, M., Francisquez, M., Franel, B., Frauche, J., Frauel, Y., Futtersack, R., Garbet, X., Garcia, J., Gardarein, J., Gargiulo, L., Garibaldi, P., Garin, P., Garnier, D., Gauthier, E., Gaye, O., Geraud, A., Gerome, M., Gervaise, V., Geynet, M., Ghendrih, P., Giacalone, I., Gibert, S., Gil, C., Ginoux, S., Giovannangelo, L., Girard, S., Giruzzi, G., Goletto, C., Goncalves, R., Gonde, R., Goniche, M., Goswami, R., Grand, C., Grandgirard, V., Gravil, B., Grisolia, C., Gros, G., Grosman, A., Guigue, J., Guilhem, D., Guillemaut, C., Guillerminet, B., Guimaraes Filho, Z., Guirlet, R., Gunn, J. P., Gurcan, O., Guzman, F., Hacquin, S., Hariri, F., Hasenbeck, F., Hatchressian, J. C., Hennequin, P., Hernandez, C., Hertout, P., Heuraux, S., Hillairet, J., Honore, C., Hornung, G., Houry, M., Hunstad, I., Hutter, T., Huynh, P., Icard, V., Imbeaux, F., Irishkin, M., Isoardi, L., Jacquinot, J., Jacquot, J., Jiolat, G., Joanny, M., Joffrin, E., Johner, J., Joubert, P., Jourd’Heuil, L., Jouve, M., Junique, C., Keller, D., Klepper, C., Kogut, D., Kubic̆, M., Labasse, F., Lacroix, B., Lallier, Y., Lamaison, V., Lambert, R., Larroque, S., Latu, G., Lausenaz, Y., Laviron, C., Le, R., Le Luyer, A., Le Niliot, C., Le Tonqueze, Y., Lebourg, P., Lefevre, T., Leroux, F., Letellier, L., Li, Y., Lipa, M., Lister, J., Litaudon, X., Liu, F., Loarer, T., Lombard, G., Lotte, P., Lozano, M., Lucas, J., Lütjens, H., Magaud, P., Maget, P., Magne, R., Mahieu, J.-F., Maini, P., Malard, P., Manenc, L., Marandet, Y., Marbach, G., Marechal, J.-L., Marfisi, L., Marle, M., Martin, C., Martin, V., Martin, G., Martinez, A., Martino, P., Masset, R., Mazon, D., Mellet, N., Mercadier, L., Merle, A., Meshcheriakov, D., Messina, P., Meyer, O., Millon, L., Missirlian, M., Moerel, J., Molina, D., Mollard, P., Moncada, V., Monier-Garbet, P., Moreau, D., Moreau, M., Moreau, P., Morel, P., Moriyama, T., Motassim, Y., Mougeolle, G., Moulton, D., Moureau, G., Mouyon, D., Naim Habib, M., Nardon, E., Négrier, V., Nemeth, J., Nguyen, C., Nguyen, M., Nicolas, L., Nicolas, T., Nicollet, S., Nilsson, E., N’Konga, B., Noel, F., Nooman, A., Norscini, C., Nouailletas, R., Oddon, P., Ohsako, T., Orain, F., Ottaviani, M., Pagano, M., Palermo, F., Panayotis, S., Parrat, H., Pascal, J.-Y., Passeron, C., Pastor, P., Patterlini, J., Pavy, K., Pecquet, A.-L., Pégourié, B., Peinturier, C., Pelletier, T., Peluso, B., Petrzilka, V., Peysson, Y., Pignoly, E., Pirola, R., Pocheau, C., Poitevin, E., Poli, V., Poli, S., Pompon, F., Porchy, I., Portafaix, C., Preynas, M., Prochet, P., Prou, M., Ratnani, A., Raulin, D., Ravenel, N., Renard, S., Ricaud, B., Richou, M., Ritz, G., Roche, H., Roubin, P., Roux, C., Ruiz, K., Sabathier, F., Sabot, R., Saille, A., Saint-Laurent, F., Sakamoto, R., Salasca, S., Salmon, T., Salmon, T., Samaille, F., Sanchez, S., Santagiustina, A., Saoutic, B., Sarazin, Y., Sardain, P., Schlosser, J., Schneider, M., Schwob, J., Segui, J., Seguin, N., Selig, G., Serret, D., Signoret, J., Signoret, J., Simonin, A., Soldaini, M., Soler, B., Soltane, C., Song, S., Sourbier, F., Sparagna, J., Spitz, P., Spuig, P., Storelli, A., Strugarek, A., Tamain, P., Tena, M., Theis, J., Thomine, O., Thouvenin, D., Torre, A., Toulouse, L., Travére, J., Tsitrone, E., Turck, B., Urban, J., Vallet, J.-C., Vallory, J., Valognes, A., Van Helvoirt, J., Vartanian, S., Verger, J.-M., Vermare, L., Vermare, C., Vezinet, D., Vicente, K., Vidal, J., Vignal, N., Vigne, T., Villecroze, F., Villedieu, E., Vincent, B., Volpe, B., Volpe, D., Volpe, R., Wagrez, J., Wang, H., Wauters, T., Wintersdorff, O., Wittebol, E., Zago, B., Zani, L., Zarzoso, D., Zhang, Y., Zhong, W. & Zou, X. L. 2013 Science and technology research and development in support to ITER and the broader approach at CEA. Nucl. Fusion 53 (10), 104023.CrossRefGoogle Scholar
Boozer, A. H. 2012 Theory of tokamak disruptions. Phys. Plasmas 19, 058101.CrossRefGoogle Scholar
Boozer, A. H. 2015 Theory of runaway electrons in ITER: equations, important parameters, and implications for mitigation. Phys. Plasmas 22, 032504.CrossRefGoogle Scholar
Bozhenkov, S. A., Finken, K. H., Lehnen, M. & Wolf, R. C. 2007 Main characteristics of the fast disruption mitigation valve. Rev. Sci. Instrum. 78, 033503.CrossRefGoogle ScholarPubMed
Bozhenkov, S. A., Lehnen, M., Finken, K. H., Bertschinger, G., Koslowski, H. R., Reiter, D., Wolf, R. C. & the TEXTOR team 2011 Fuelling efficiency of massive gas injection in TEXTOR: mass scaling and importance of gas flow dynamics. Nucl. Fusion 51, 083033.CrossRefGoogle Scholar
Bozhenkov, S. A., Lehnen, M., Finken, K. H., Jakubowski, M. W., Wolf, R. C., Jaspers, R., Kantor, M., Marchuk, O. V., Uzgel, E., VanWassenhove, G., Zimmermann, O., Reiter, D. & the TEXTOR team 2008 Generation and suppression of runaway electrons in disruption mitigation experiments in TEXTOR. Plasma Phys. Control. Fusion 50, 105007.CrossRefGoogle Scholar
Carreras, B., Hicks, H. R., Holmes, J. A. & Waddell, B. V. 1980 Nonlinear coupling of tearing modes with self-consistent resistivity evolution in tokamaks. Phys. Fluids 23 (9), 18111826.CrossRefGoogle Scholar
Chen, Z. Y., Kim, W. C., Yu, Y. W., England, A. C., Yoo, J. W., Hahn, S. H., Yoon, S. W., Lee, Y. K., Oh, Y. K., Kwak, J. G. & Kwon, M. 2013 Study of runaway current generation following disruptions in KSTAR. Plasma Phys. Control. Fusion 55, 035007.CrossRefGoogle Scholar
Commaux, N., Baylor, L. R., Combs, S. K., Eidietis, N. W., Evans, T. E., Foust, C. R., Hollmann, E. M., Humphreys, D. A., Izzo, V. A., James, A. N., Jernigan, T. C., Meitner, S. J., Parks, P. B., Wesley, J. C. & Yu, J. H. 2011 Novel rapid shutdown strategies for runaway electron suppression in DIII-D. Nucl. Fusion 51 (10), 103001.CrossRefGoogle Scholar
Finken, K. H., Abdullaev, S. S., Jakubowski, M., Lehnen, M., Nicolai, A. & Spatschek, K. H. 2005 The Structure of Magnetic Field in the TEXTOR-DED. Energy Technology. Vol. 45. Forschungszentrum Jülich.Google Scholar
Finken, K. H., Lehnen, M. & Bozhenkov, S. A. 2008 Gas flow analysis of a disruption mitigation valve (DMV). Nucl. Fusion 48, 115001.CrossRefGoogle Scholar
Finken, K. H., Lehnen, M. & Bozhenkov, S. A. 2011 A new disruption mitigation valve (DMV) and gas flow in guiding tubes of different diameter. Nucl. Fusion 51, 033007.CrossRefGoogle Scholar
Forster, M., Finken, K. H., Kudyakov, T., Lehnen, M., Willi, O., Xu, Y., Zeng, L. & the TEXTOR team 2012 Temporal and spectral evolution of runaway electron bursts in TEXTOR disruptions. Phys. Plasmas 19, 092513.CrossRefGoogle Scholar
Fredrickson, E. D., Bell, M. G., Taylor, G. & Medley, S. S. 2015 Control of disruption-generated runaway plasmas in TFTR. Nucl. Fusion 55 (1), 013006.CrossRefGoogle Scholar
Fukuyama, A., Itoh, K., Itoh, S. I., Tsuji, S. & Lichtenberg, A. J. 1993 Stochasticity driven disruptive phenomena in tokamaks. In Proc. 14th IAEA Int. Conf. on Plasma Physics and Controlled Nuclear Fusion Research, Würzburg, Germany, 30 September–7 October 1992. Vol. 2, pp. 363370. IAEA, IAEA-CN-56/D-4-21.Google Scholar
Fülöp, T. & Newton, S. 2014 Alfvénic instabilities driven by runaways in fusion plasmas. Phys. Plasmas 21 (8), 080702.CrossRefGoogle Scholar
Fülöp, T., Smith, H. M. & Pokol, G. 2009 Magnetic field threshold for runaway generation in tokamak disruptions. Phys. Plasmas 16, 022502.CrossRefGoogle Scholar
Gerasimov, S. N., Hender, T. C., Morris, J., Riccardo, V., Zakharov, L. E. & JET EFDA Contributors 2014 Plasma current asymmetries during disruptions in JET. Nucl. Fusion 54 (7), 073009.CrossRefGoogle Scholar
Gerhardt, S. P., Menard, J. E. & the NSTX team 2009 Characterization of the plasma current quench during disruptions in the National Spherical Torus Experiment. Nucl. Fusion 49 (2), 025005.CrossRefGoogle Scholar
Gill, R. D. 1993 Generation and loss of runaway electrons following disruptions in JET. Nucl. Fusion 33 (11), 16131625.CrossRefGoogle Scholar
Gill, R. D., Alper, B., de Baar, M., Hender, T. C., Johnson, M. F., Riccardo, V. & contributors to the EFDA-JET workprogramme 2002 Behaviour of disruption generated runaways in JET. Nucl. Fusion 42, 10391046.CrossRefGoogle Scholar
Gill, R. D., Alper, B., Edwards, A. W., Ingesson, L. C., Johnson, M. F. & Ward, D. J. 2000 Direct observations of runaway electrons during disruptions in the JET tokamak. Nucl. Fusion 40 (2), 163174.CrossRefGoogle Scholar
Granetz, R. S., Hollmann, E. M., Whyte, D. G., Izzo, V. A., Antar, G. Y., Bader, A., Bakhtiari, M., Biewer, T., Boedo, J. A., Evans, T. E., Hutchinson, I. H. & Jernigan, T. C. 2007 Gas jet disruption mitigation studies on Alcator C-mod and DIII-D. Nucl. Fusion 47, 1086.CrossRefGoogle Scholar
Guan, X., Qin, H. & Fisch, N. J. 2010 Phase-space dynamics of runaway electrons in tokamaks. Phys. Plasmas 17 (9), 092502.CrossRefGoogle Scholar
Helander, P., Eriksson, L.-G. & Andersson, F. 2000 Suppression of runaway electron avalanches by radial diffusion. Phys. Plasmas 7 (10), 41064111.CrossRefGoogle Scholar
Hender, T. C., Wesley, J. C., Bialek, J., Bondeson, A., Boozer, A. H., Buttery, R. J., Garofalo, A., Goodman, T. P., Granetz, R. S., Gribov, Y., Gruber, O., Gryaznevich, M., Giruzzi, G., Günter, S., Hayashi, N., Helander, P., Hegna, C. C., Howell, D. F., Humphreys, D. A., Huysmans, G. T. A., Hyatt, A. W., Isayama, A., Jardin, S. C., Kawano, Y., Kellman, A., Kessel, C., Koslowski, H. R., La Haye, R. J., Lazzaro, E., Liu, Y. Q., Lukash, V., Manickam, J., Medvedev, S., Mertens, V., Mirnov, S. V., Nakamura, Y., Navratil, G., Okabayashi, M., Ozeki, T., Paccagnella, R., Pautasso, G., Porcelli, F., Pustovitov, V. D., Riccardo, V., Sato, M., Sauter, O., Schaffer, M. J., Shimada, M., Sonato, P., Strait, E. J., Sugihara, M., Takechi, M., Turnbull, A. D., Westerhof, E., Whyte, D. G., Yoshino, R., Zohm, H. & the ITPA MHD, Disruption and Magnetic Control Topical Group 2007 Progress in the ITER physics basis. Nucl. Fusion 47, S128S202; Chapter 3: MHD stability, operational limits and disruptions.CrossRefGoogle Scholar
Hollmann, E. M., Commaux, N., Eidietis, N. W., Evans, T. E., Humphreys, D. A., James, A. N., Jernigan, T. C., Parks, P. B., Strait, E. J., Wesley, J. C., Yu, J. H., Austin, M. E., Baylor, L. R., Brooks, N. H., Izzo, V. A., Jackson, G. L., van Zeeland, M. A. & Wu, W. 2010 Experiments in DIII-D toward achieving rapid shutdown with RE suppression. Phys. Plasmas 17 (5), 056117.CrossRefGoogle Scholar
Hollmann, E. M., Austin, M. E., Boedo, J. A., Brooks, N. H., Commaux, N., Eidietis, N. W., Humphreys, D. A., Izzo, V. A., James, A. N., Jernigan, T. C., Loarte, A., Martin-Solis, J., Moyer, R. A., Muñoz-Burgos, J. M., Parks, P. B., Rudakov, D. L., Strait, E. J., Tsui, C., Van Zeeland, M. A., Wesley, J. C. & Yu, J. H. 2013 Control and dissipation of runaway electron beams created during rapid shutdown experiments in DIII-D. Nucl. Fusion 53 (8), 083004.CrossRefGoogle Scholar
Izzo, V. A., Hollmann, E. M., James, A. N., Yu, J. H., Humphreys, D. A., Lao, L. L., Parks, P. B., Sieck, P. E., Wesley, J. C., Granetz, R. S., Olynyk, G. M. & Whyte, D. G. 2011 Runaway electron confinement modelling for rapid shutdown scenarios in DIII-D, Alcator C-Mod and ITER. Nucl. Fusion 51 (6), 063032.CrossRefGoogle Scholar
Izzo, V. A., Humphreys, D. A. & Kornbluth, M. 2012 Analysis of shot-to-shot variability in post-disruption runaway electron currents for diverted DIII-D discharges. Plasma Phys. Control. Fusion 54 (9), 095002.CrossRefGoogle Scholar
Jakubowski, M. W., Schmitz, O., Abdullaev, S. S., Brezinsek, S., Finken, K. H., Krämer-Flecken, A., Lehnen, M., Samm, U., Spatschek, K. H., Unterberg, B., Wolf, R. C. & the TEXTOR team 2006 Change of the magnetic-field topology by an ergodic divertor and the effect on the plasma structure and transport. Phys. Rev. Lett. 96, 035004.CrossRefGoogle ScholarPubMed
James, A. N., Austin, M. E., Commaux, N., Eidietis, N. W., Evans, T. E., Hollmann, E. M., Humphreys, D. A., Hyatt, A. W., Izzo, V. A., Jernigan, T. C., La Haye, R. J., Parks, P. B., Strait, E. J., Tynan, G. R., Wesley, J. C. & Yu, J. H. 2012 Measurements of hard X-ray emission from runaway electrons in DIII-D. Nucl. Fusion 52 (1), 013007.CrossRefGoogle Scholar
Kadanoff, L. P.2004 Excellence in computer simulation. Perspect. Comput. Sci. (IEEE-CS and AIP), March/April, 57–67.Google Scholar
Kadomtsev, B. B. 1984 Behavior of disruptions in tokamaks. Plasma Phys. Control. Fusion 26, 217226.CrossRefGoogle Scholar
Kawano, Y., Yoshino, R., Kondoh, T., Isei, N., Ishida, S., Tobita, K., Hatae, T., Itami, K., Sakasai, S.& the JT-60 team 1997 Suppression of runaways – electron generation during disruptive discharge – termination in JT-60U. In Controlled Fusion and Plasma Physics. Proc. 24th Eur. Conf., Berchtesgaden, 1997. Vol. 21A, pp. 501504. European Physical Society.Google Scholar
Koltunov, M. & Tokar, M. Z. 2011 Modification of local plasma parameters by impurity injection. Plasma Phys. Control. Fusion 53 (6), 065015.CrossRefGoogle Scholar
Koslowski, H. R., Soltwisch, H. & Stodiek, W. 1996 Polarimetric measurement of $m=1$ sawtooth precursor oscillations in the TEXTOR tokamak. Plasma Phys. Control. Fusion 38 (3), 271278.CrossRefGoogle Scholar
Koslowski, H. R., Zeng, L., Lehnen, M., Lvovskiy, A., Wongrach, K. & the TEXTOR team2014 Influence of massive gas injection and resonant magnetic perturbations on the generation of runaway electrons during disruptions in TEXTOR. In Proc. 41st EPS Conf. on Plasma Physics, Berlin, 22–28 June 2014, P5.028.Google Scholar
Kruger, S. E., Schnak, D. D. & Sovinec, C. R. 2005 Dynamics of the major disruption of a DIII-D plasma. Phys. Plasmas 12, 056113.CrossRefGoogle Scholar
Lehnen, M., Alonso, A., Arnoux, G., Baumgarten, N., Bozhenkov, S. A., Brezinsek, S., Brix, M., Eich, T., Gerasimov, S. N., Huber, A., Jachmich, S., Kruezi, U., Morgan, P. D., Plyusnin, V. V., Reux, C., Riccardo, V., Sergienko, G., Stamp, M. F. & contributors, JET EFDA 2011 Disruption mitigation by massive gas injection in JET. Nucl. Fusion 51 (12), 123010.CrossRefGoogle Scholar
Lehnen, M., Abdullaev, S. S., Arnoux, G., Bozhenkov, S. A., Jakubowski, M. W., Jaspers, R., Plyusnin, V. V., Riccardo, V., Samm, U., JET EFDA Contributors & the TEXTOR team 2009 Runaway generation during disruptions in JET and TEXTOR. J. Nucl. Mater. 390–391, 740746.CrossRefGoogle Scholar
Lehnen, M., Bozhenkov, S. A., Abdullaev, S. S., Jakubowski, M. W. & the TEXTOR team 2008 Suppression of runaway electrons by resonant magnetic perturbations in TEXTOR disruptions. Phys. Rev. Lett. 100, 255003.CrossRefGoogle ScholarPubMed
Levinton, F. M., Zarnstorff, M. C., Batha, S. H., Bell, M., Bell, R. E., Budny, R. V., Bush, C., Chang, Z., Fredrickson, E., Janos, A., Manickam, J., Ramsey, A., Sabbagh, S. A., Schmidt, G. L., Synakowski, E. J. & Taylor, G. 1995 Improved confinement with reversed magnetic shear in TFTR. Phys. Rev. Lett. 75 (24), 44174420.CrossRefGoogle ScholarPubMed
Lichtenberg, A. J. 1984 Stochasticity as the mechanism for the disruptive phase of the $m=1$ tokamak oscillations. Nucl. Fusion 24, 12771289.CrossRefGoogle Scholar
Olynyk, G. M., Granetz, R. S., Reinke, M. L., Whyte, D. G., Golfinopoulos, T., Hughes, J. W., Walk, J. R., Izzo, V. A., Combs, S. K., Milora, S. L. & Brookman, M. W. 2013 Rapid shutdown experiments with one and two gas jets on Alcator C-Mod. Nucl. Fusion 53 (9), 092001.CrossRefGoogle Scholar
O’Rourke, J. 1991 The change in the safety factor profile at a sawtooth collapse. Plasma Phys. Control. Fusion 33, 289296.CrossRefGoogle Scholar
Papp, G., Drevlak, M., Fülöp, T., Helander, P. & Pokol, G.-I. 2011 Runaway electron losses caused by resonant magnetic perturbations in ITER. Plasma Phys. Control. Fusion 53, 095004.CrossRefGoogle Scholar
Papp, G., Drevlak, M., Fülöp, T. & Pokol, G.-I. 2012 The effect of resonant magnetic perturbations on runaway electron transport in ITER. Plasma Phys. Control. Fusion 54, 125008.CrossRefGoogle Scholar
Papp, G., Fülöp, T., Fehér, T., de Vries, P. C., Riccardo, V., Reux, C., Lehnen, M., Kiptily, V., Plyusin, V. V., Alper, B. & JET-EFDA Contributors 2013 The effect of ITER-like wall on runaway electron generation in JET. Nucl. Fusion 53, 123017.CrossRefGoogle Scholar
Pautasso, G., Coster, D., Eich, Th., Fuchs, J. C., Gruber, O., Gude, A., Herrmann, A., Igochine, V., Konz, C., Kurzan, B., Lackner, K., Lunt, T., Marascheck, M., Mlynek, A., Reiter, B., Rohde, V., Zhang, Y., Bonnin, X., Beck, M., Prausner, G. & the ASDEX Upgrade Team 2009 Disruption studies in ASDEX Upgrade in view of ITER. Plasma Phys. Control. Fusion 51, 124056.CrossRefGoogle Scholar
Plyusnin, V. V., Riccardo, V., Jaspers, R., Alper, B., Kiptily, V. G., Mlynar, J., Popovichev, S., de La Luna, E., Andersson, F. & JET EFDA contributors 2006 Study of runaway electron generation during major disruptions in JET. Nucl. Fusion 46, 277284.CrossRefGoogle Scholar
Qin, H., Guan, X. & Fisch, N. J.2011 Neoclassical drift of circulating orbits due to toroidal electric field in tokamaks. Tech. Rep. PPPL-4639. Princeton Plasma Physics Laboratory, Princeton.Google Scholar
Reux, C., Bucalossi, J., Saint-Laurent, F., Gil, C., Moreau, P. & Maget, P. 2010 Experimental study of disruption mitigation using massive injection of noble gases on Tore Supra. Nucl. Fusion 50, 095006.CrossRefGoogle Scholar
Schüller, F. C. 1995 Disruptions in tokamaks. Plasma Phys. Control. Fusion 37, A135A162.CrossRefGoogle Scholar
Shibata, Y., Watanabe, K.Y., Ohno, N., Okamoto, M., Isayama, A., Kurihara, K., Nakano, T., Oyama, N., Kawano, Y., Matsunaga, G., Sakakibara, S., Sugihara, M., Kamada, Y.& the JT-60 team 2010 Study of current decay time during disruption in JT-60U tokamak. Nucl. Fusion 50, 025015.CrossRefGoogle Scholar
Soltwisch, H. & Koslowski, H. R. 1995 Sawtooth modulation of the poloidal field in TEXTOR under ohmic heating conditions. Plasma Phys. Control. Fusion 37 (6), 667678.CrossRefGoogle Scholar
Soltwisch, H. & Koslowski, H. R. 1997 Observation of magnetic field perturbations during sawtooth activity in tokamak plasmas. Plasma Phys. Control. Fusion 39 (5A), A341A349.CrossRefGoogle Scholar
Soltwisch, H. & Stodiek, W. 1987 Polarimetric measurement of safety factor changes during a sawtooth cycle in the TEXTOR tokamak under ohmic heating conditions. Bull. Amer. Phys. Soc. 32 (9), 1929. Proc. 29th Annu. Meet. of the APS Division of Plasma Physics. San Diego.Google Scholar
Soltwisch, H., Stodiek, W., Manickam, J. & Schlüter, J. 1987 Current density profiles in the TEXTOR tokamak. In Proc. 11th IAEA Conf. on Plasma Physics and Controlled Fusion Research, Kyoto, 13–20 November 1986, Vol. 1, pp. 263273. IAEA, IAEA-CN-47/A-V-1.Google Scholar
Spizzo, G., Vianello, N., White, R. B., Abdullaev, S. S., Agostini, M., Cavazzana, R., Ciaccio, G., Puiatti, M. E., Scarin, P., Schmitz, O., Spolaore, M., Terranova, D. & RFX and TEXTOR Teams 2014 Edge ambipolar potential in toroidal fusion plasmas. Phys. Plasmas 21 (5), 056102.CrossRefGoogle Scholar
Strait, E. J., Lao, L. L., Mauel, M. E., Rice, B. W., Taylor, T. S., Burrell, K. H., Chu, M. S., Lazarus, E. A., Osborne, T. H., Thompson, S. J. & Turnbull, A. D. 1995 Enhanced confinement and stability in DIII-D discharges with reversed magnetic shear. Phys. Rev. Lett. 75 (24), 44214424.CrossRefGoogle ScholarPubMed
Tokar, M. Z. & Koltunov, M. 2013 Modelling of the plasma global response to a local cooling. Plasma Phys. Control. Fusion 55 (4), 045013.CrossRefGoogle Scholar
Tokuda, S. & Yoshino, R. 1999 Simulation study on collisionless loss of runaway electrons by magnetic perturbations in a tokamak. Nucl. Fusion 39, 11231132.CrossRefGoogle Scholar
Wesson, J. 2004 Tokamaks, 3rd edn, Clarendon.Google Scholar
Wesson, J. A., Gill, R. D., Hugon, M., Schüller, F. C., Snipes, J. A., Ward, D. J., Bartlett, D. V., Campbell, D. J., Duperrex, P. A., Edwards, A. W., Granetz, R. S., Gottardi, N. A. O., Hender, T. C., Lazzaro, E., Lomas, P. J., Lopes Cardozo, N., Mast, K. F., Nave, M. F. F., Salmon, N. A., Smeulders, P., Thomas, P. R., Tubbing, B. J. D., Turner, M. F. & Weller, A. 1989 Disruptions in JET. Nucl. Fusion 29 (4), 641666.CrossRefGoogle Scholar
White, R. B. 2014 The Theory of Toroidally Confined Plasmas, 3rd edn, Imperial College Press.CrossRefGoogle Scholar
Whyte, D. G., Jernigan, T. C., Humphreys, D. A., Hyatt, A. W., Lasnier, C. J., Parks, P. B., Evans, T. E., Rosenbluth, M. N., Taylor, P. L., Kellman, A. G., Gray, D. S., Hollmann, E. M. & Combset, S. K. 2002 Mitigation of tokamak disruptions using high-pressure gas injection. Phys. Rev. Lett. 89 (5), 055001.CrossRefGoogle ScholarPubMed
Whyte, D. G., Jernigan, T. C., Humphreys, D. A., Hyatt, A. W., Lasnier, C. J., Parks, P. B., Evans, T. E., Taylor, P. L., Kellman, A. G., Gray, D. S. & Hollmannet, E. M. 2003 Disruption mitigation with high-pressure noble gas injection. J. Nucl. Mater. 313–316, 1239.CrossRefGoogle Scholar
Wongrach, K., Finken, K. H., Abdullaev, S. S., Koslowski, R., Willi, O., Zeng, L. & the TEXTOR team 2014 Measurement of synchrotron radiation from runaway electrons during TEXTOR tokamak disruptions. Nucl. Fusion 54, 043011.CrossRefGoogle Scholar
Wongrach, K., Finken, K. H., Abdullaev, S. S., Willi, O., Zeng, L., Xu, Y. & the TEXTOR team 2015 Runaway electron studies in TEXTOR. Nucl. Fusion 55, 053008.CrossRefGoogle Scholar
Yamada, M., Livinton, F. M., Pomphrey, N., Budny, R., Manickam, J. & Nagayama, Y. 1994 Investigation of magnetic reconnection during a sawtooth crash in a high-temperature tokamak plasma. Phys. Plasmas 1, 32693276.CrossRefGoogle Scholar
Yoshino, R. & Tokuda, S. 2000 Runaway electrons in magnetic turbulence and runaway current termination in tokamak discharge. Nucl. Fusion 40 (7), 12931309.CrossRefGoogle Scholar
Zehrfeld, H. P., Fussmann, G. & Green, B. J. 1981 Electric field effects on relativistic charged particle motion in tokamaks. Plasma Phys. 23 (5), 473489.CrossRefGoogle Scholar
Zeng, L., Koslowski, H. R., Liang, Y., Lvovskiy, A., Lehnen, M., Nicolai, D., Pearson, J., Rack, M., Jaegers, H., Finken, K. H., Wongrach, K. & Xu, Y. 2013 Experimental observation of a magnetic-turbulence threshold for runaway generation in the TEXTOR tokamak. Phys. Rev. Lett. 110, 235003.CrossRefGoogle ScholarPubMed
Supplementary material: File

Abdullaev supplementary material

Abdullaev supplementary material 1

Download Abdullaev supplementary material(File)
File 10.7 MB