Hostname: page-component-8448b6f56d-42gr6 Total loading time: 0 Render date: 2024-04-23T08:57:04.002Z Has data issue: false hasContentIssue false

Nanoscopic Localization of Surface-Exposed Antigens of Borrelia burgdorferi

Published online by Cambridge University Press:  05 March 2015

Leandro Lemgruber*
Affiliation:
Department of Infectious Diseases – Parasitology, Im Neuenheimer Feld 324, University of Heidelberg Medical School, 69120, Heidelberg, Germany Laboratory of Microscopy for Life Sciences, Diretoria de Metrologia Aplicada às Ciências da Vida – Dimav, Instituto Nacional de Metrologia, Qualidade e Tecnologia – Inmetro, 25250-020, Duque de Caxias, Rio de Janeiro, Brazil Instituto Nacional de Ciência e Tecnologia em Biologia Estrutural e Bioimagens, UFRJ, 21941-902, Rio de Janeiro, Brazil
Celso Sant’Anna
Affiliation:
Laboratory of Microscopy for Life Sciences, Diretoria de Metrologia Aplicada às Ciências da Vida – Dimav, Instituto Nacional de Metrologia, Qualidade e Tecnologia – Inmetro, 25250-020, Duque de Caxias, Rio de Janeiro, Brazil Instituto Nacional de Ciência e Tecnologia em Biologia Estrutural e Bioimagens, UFRJ, 21941-902, Rio de Janeiro, Brazil
Caron Griffths
Affiliation:
Gene Expression and Biophysics Group, Synthetic Biology Emerging Research Area, Council for Scientific and Industrial Research, Box 395, Pretoria 0001S, South Africa
Yuri Abud
Affiliation:
Laboratory of Microscopy for Life Sciences, Diretoria de Metrologia Aplicada às Ciências da Vida – Dimav, Instituto Nacional de Metrologia, Qualidade e Tecnologia – Inmetro, 25250-020, Duque de Caxias, Rio de Janeiro, Brazil
Musa Mhlanga
Affiliation:
Gene Expression and Biophysics Group, Synthetic Biology Emerging Research Area, Council for Scientific and Industrial Research, Box 395, Pretoria 0001S, South Africa
Reinhard Wallich
Affiliation:
Institute for Immunology, Im Neuenheimer Feld 305, University of Heidelberg Medical School, 69120, Heidelberg, Germany
Friedrich Frischknecht
Affiliation:
Department of Infectious Diseases – Parasitology, Im Neuenheimer Feld 324, University of Heidelberg Medical School, 69120, Heidelberg, Germany
*
*Corresponding author. llsoares-pronametro@inmetro.gov.br
Get access

Abstract

Borrelia burgdorferi sensu lato, the causative agent of Lyme disease, is transmitted to humans through the bite of infected Ixodes spp. ticks. Successful infection of vertebrate hosts necessitates sophisticated means of the pathogen to escape the vertebrates’ immune system. One strategy employed by Lyme disease spirochetes to evade adaptive immunity involves a highly coordinated regulation of the expression of outer surface proteins that is vital for infection, dissemination, and persistence. Here we characterized the expression pattern of bacterial surface antigens using different microscopy techniques, from fluorescent wide field to super-resolution and immunogold-scanning electron microscopy. A fluorescent strain of B. burgdorferi spirochetes was labeled with monoclonal antibodies directed against various bacterial surface antigens. Our results indicate that OspA is more evenly distributed over the surface than OspB and OspC that were present as punctate areas.

Type
Biological Applications
Copyright
© Microscopy Society of America 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Anguita, J., Hedrick, M.N. & Fikrig, E. (2003). Adaptation of Borrelia burgdorferi in the tick and the mammalian host. FEMS Microbiol Rev 27, 493504.Google Scholar
Bauer, Y., Hofmann, H., Jahraus, O., Mytilineos, J., Simon, M.M. & Wallich, R. (2001). Prominent T cell response to a selectively in vivo expressed Borrelia burgdorferi outer surface protein (pG) in patients with Lyme disease. Eur J Immunol 31, 767776.3.0.CO;2-M>CrossRefGoogle ScholarPubMed
Bockenstedt, L.K., Gonzalez, D., Mao, J., Li, M., Belperron, A.A. & Haberman, A. (2014). What ticks do under your skin: two-photon intravital imaging of Ixodes scapularis feeding in the presence of the Lyme disease spirochete. Yale J Biol Med 87, 313.Google Scholar
Brusca, J.S., McDowall, A.W., Norgard, M.V. & Radolf, J.D. (1991). Localization of outer surface proteins A and B in both the outer membrane and intracellular compartments of Borrelia burgdorferi . J Bacteriol 173, 80048008.CrossRefGoogle Scholar
Cattoni, D.I., Fiche, J.B. & Nöllmann, M. (2012). Single-molecule super-resolution imaging in bacteria. Cur Opin Microbiol 15, 758763.Google Scholar
Coltharp, C. & Xiao, J. (2012). Superresolution microscopy for microbiology. Cell Microbiol 14, 18081818.CrossRefGoogle ScholarPubMed
Conchello, J.-A. & Lichtman, J.W. (2005). Optical sectioning microscopy. Nat Met 2, 920931.CrossRefGoogle ScholarPubMed
Cox, D.L., Akins, D.R., Bourell, K.W., Lahdenne, P., Norgard, M.V. & Radolf, J.D. (1996). Limited surface exposure of Borrelia burgdorferi outer surface lipoproteins. Proc Natl Acad Sci U S A 93, 79737978.Google Scholar
Crowley, J.T., Toledo, A.M., LaRocca, T.J., Coleman, J.L., London, E. & Benach, J.L. (2013). Lipid exchange between Borrelia burgdorferi and host cells. PLoS Pathog 9, e1003109.Google Scholar
Dunham-Ems, S.M., Caimano, M.J., Pal, U., Wolgemuth, C.W., Eggers, C.H., Balic, A. & Radolf, J.D. (2009). Live imaging reveals a biphasic mode of dissemination of Borrelia burgdorferi within ticks. J Clin Investig 119, 36523665.CrossRefGoogle ScholarPubMed
Fischer, R.S., Wu, Y., Kanchanawong, P., Shroff, H. & Waterman, C.M. (2011). Microscopy in 3D: a biologist’s toolbox. Trends Cell Biol 21, 682691.CrossRefGoogle ScholarPubMed
Floden, A.M., Watt, J.A. & Brissette, C.A. (2011). Borrelia burgdorferi enolase is a surface-exposed plasminogen binding protein. PLoS One 6, e27502.CrossRefGoogle ScholarPubMed
Frischknecht, F. (2007). The skin as interface in the transmission of arthropod-borne pathogens. Cell Microbiol 9, 16301640.CrossRefGoogle ScholarPubMed
Gesslbauer, B., Poljak, A., Handwerker, C., Schüler, W., Schwendenwein, D., Weber, C., Lundberg, U., Meinke, A. & Kungl, A.J. (2012). Comparative membrane proteome analysis of three Borrelia species. Proteomics 12, 845858.Google Scholar
Goldberg, M.W. (2008). Immunolabeling for scanning electron microscopy (SEM) and field emission SEM. Met Cell Biol 88, 109130.Google Scholar
Griffihs, G. (1993). Labeling Reactions for Immunocytochemistry , Griffihs, G. (Ed.), pp. 237278. Heidelberg: Springer-Verlag.Google Scholar
Hauser, U., Lehnert, G. & Wilske, B. (1998). Diagnostic value of proteins of three Borrelia species (Borrelia burgdorferi sensu lato) and implications for development and use of recombinant antigens for serodiagnosis of Lyme borreliosis in Europe. Clin Diagn Lab Immunol 5, 456462.Google Scholar
Hefty, P.S., Jolliff, S.E., Caimano, M.J., Wikel, S.K. & Akins, D.R. (2002). Changes in temporal and spatial patterns of outer surface lipoprotein expression generate population heterogeneity and antigenic diversity in the Lyme disease spirochete, Borrelia burgdorferi . Inf Immun 70, 34683478.CrossRefGoogle ScholarPubMed
Henriques, R., Griffiths, C., Hesper Rego, E. & Mhlanga, M.M. (2011). PALM and STORM: Unlocking live-cell super-resolution. Biopolymers 95, 322331.Google Scholar
Henriques, R., Lelek, M., Fornasiero, E.F., Valtorta, F., Zimmer, C. & Mhlanga, M.M. (2010). QuickPALM: 3D real-time photoactivation nanoscopy image processing in imageJ. Nat Met 7, 339340.Google Scholar
Hermann, R., Walther, P. & Müller, M. (1996). Immunogold labeling in scanning electron microscopy. Histochem Cell Biol 106, 3139.Google Scholar
Hovius, J.W.R., van Dam, A.P. & Fikrig, E. (2007). Tick–host–pathogen interactions in Lyme borreliosis. Trends Parasitol 23, 434438.Google Scholar
Huang, B., Babcock, H. & Zhuang, X. (2010). Breaking the diffraction barrier: Super-resolution imaging of cells. Cell 143, 10471058.Google Scholar
Kenedy, M.R., Lenhart, T.R. & Akins, D.R. (2012). The role of Borrelia burgdorferi outer surface proteins. FEMS Immunol Med Microbiol 66, 119.CrossRefGoogle ScholarPubMed
Kramer, M., Schaible, U., Wallich, R., Moter, S., Petzoldt, D. & Simon, M. (1990). Characterization of Borrelia burgdorferi associated antigens by monoclonal-antibodies. Immunobiology 181, 357366.CrossRefGoogle ScholarPubMed
Kudryashev, M., Cyrklaff, M., Alex, B., Lemgruber, L., Baumeister, W., Wallich, R. & Frischknecht, F. (2011). Evidence of direct cell-cell fusion in Borrelia by cryogenic electron tomography. Cellular Microbiology 13, 731741.Google Scholar
Kudryashev, M., Cyrklaff, M., Baumeister, W., Simon, M.M., Wallich, R. & Frischknecht, F. (2009). Comparative cryo-electron tomography of pathogenic Lyme disease spirochetes. Mol Microbiol 71, 14151434.Google Scholar
Kumru, O.S., Schulze, R.J., Rodnin, M.V., Ladokhin, A.S. & Zuckert, W.R. (2011). Surface localization determinants of Borrelia OspC/Vsp family lipoproteins. J Bacteriol 193, 28142825.Google Scholar
LaRocca, T.J., Pathak, P., Chiantia, S., Toledo, A., Silvius, J.R., Benach, J.L. & London, E. (2013). Proving lipid rafts exist: Membrane domains in the prokaryote Borrelia burgdorferi have the same properties as eukaryotic lipid rafts. PLoS Pathog 9, e1003353.Google Scholar
Lee, W.-Y., Moriarty, T.J., Wong, C.H.Y., Zhou, H., Strieter, R.M., van Rooijen, N., Chaconas, G. & Kubes, P. (2010). An intravascular immune response to Borrelia burgdorferi involves kupffer cells and inkt cells. Nat Immunol 11, 295302.Google Scholar
Lichtman, J.W. & Conchello, J.-A. (2005). Fluorescence microscopy. Nat Met 2, 910919.CrossRefGoogle ScholarPubMed
Miller, J.C. (2003). Immunological and genetic characterization of Borrelia burgdorferi BapA and EppA proteins. Microbiology 149, 11131125.Google Scholar
Moriarty, T.J., Norman, M.U., Colarusso, P., Bankhead, T., Kubes, P. & Chaconas, G. (2008). Real-time high resolution 3D imaging of the Lyme disease spirochete adhering to and escaping from the vasculature of a living host. PLoS Pathog 4, e1000090.Google Scholar
Önder, Ö., Humphrey, P. & McOmber, B. (2012). OspC is potent plasminogen receptor on surface of Borrelia burgdorferi . J Biol Chem 287, 1686016868.Google Scholar
Palmer, G.H., Bankhead, T. & Lukehart, S.A. (2009). ‘Nothing is permanent but change’–antigenic variation in persistent bacterial pathogens. Cell Microbiol 11, 16971705.Google Scholar
Radolf, J.D., Caimano, M.J., Stevenson, B. & Hu, L.T. (2012). Of ticks, mice and men: Understanding the dual-host lifestyle of Lyme disease spirochaetes. Nat Rev Microbiol 10, 8799.CrossRefGoogle ScholarPubMed
Radolf, J.D., Goldberg, M.S., Bourell, K., Baker, S.I., Jones, J.D. & Norgard, M.V. (1995). Characterization of outer membranes isolated from Borrelia burgdorferi, the Lyme disease spirochete. Infect Immun 63, 21542163.Google Scholar
Raffel, S.J., Battisti, J.M., Fischer, R.J. & Schwan, T.G. (2014). Inactivation of genes for antigenic variation in the relapsing fever spirochete Borrelia hermsii reduces infectivity in mice and transmission by ticks. PLoS Pathog 10, e1004056.Google Scholar
Roessler, D., Hauser, U. & Wilske, B. (1997). Heterogeneity of BmpA (P39) among European isolates of Borrelia burgdorferi sensu lato and influence of interspecies variability on serodiagnosis. J Clin Microbiol 35, 27522758.Google Scholar
Rust, M.J., Bates, M. & Zhuang, X. (2006). Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM). Nat Met 3, 793796.Google Scholar
Sant’Anna, C., Campanati, L., Gadelha, C., Lourenço, D., Labati-Terra, L., Bittencourt-Silvestre, J., Benchimol, M., Cunha-e-Silva, N.L. & De Souza, W. (2005). Improvement on the visualization of cytoskeletal structures of protozoan parasites using high-resolution field emission scanning electron microscopy (FESEM). Histochem Cell Biol 124, 8795.CrossRefGoogle ScholarPubMed
Schermelleh, L., Heintzmann, R. & Leonhardt, H. (2010). A guide to super-resolution fluorescence microscopy. J Cell Biol 190, 165175.Google Scholar
Schmit, V.L., Patton, T.G. & Gilmore, R.D. Jr (2011). Analysis of Borrelia burgdorferi surface proteins as determinants in establishing host cell interactions. Front Microbiol 2, 141.CrossRefGoogle ScholarPubMed
Schwan, T.G. & Piesman, J. (2000). Temporal changes in outer surface proteins A and C of the Lyme disease-associated spirochete, Borrelia burgdorferi, during the chain of infection in ticks and mice. J Clin Microbiol 38, 382388.Google Scholar
Schwan, T.G., Piesman, J., Golde, W.T., Dolan, M.C. & Rosa, P.A. (1995). Induction of an outer surface protein on Borrelia burgdorferi during tick feeding. Proc Natl Acad Sci U S A 92, 29092913.Google Scholar
Simpson, W.J., Burgdorfer, W., Schrumpf, M.E., Karstens, R.H. & Schwan, T.G. (1991). Antibody to a 39-kilodalton Borrelia burgdorferi antigen (P39) as a marker for infection in experimentally and naturally inoculated animals. J Clin Microbiol 29, 236243.Google Scholar
Slot, J.W. & Geuze, H.J. (2007). Cryosectioning and immunolabeling. Nat Protoc 2, 24802491.Google Scholar
Templeton, T.J. (2004). Borrelia outer membrane surface proteins and transmission through the tick. J Exp Med 199, 603606.Google Scholar
Thein, M., Bonde, M., Bunikis, I., Denker, K., Sickmann, A., Bergström, S. & Benz, R. (2012). DipA, a pore-forming protein in the outer membrane of Lyme disease spirochetes exhibits specificity for the permeation of dicarboxylates. PLoS One 7, e36523.Google Scholar
Tilly, K., Bestor, A. & Rosa, P.A. (2013). Lipoprotein succession in Borrelia burgdorferi: Similar but distinct roles for OspC and VlsE at different stages of mammalian infection. Mol Microbiol 89, 216227.Google Scholar
Toledo, A., Crowley, J.T., Coleman, J.L., LaRocca, T.J., Chiantia, S., London, E. & Benach, J.L. (2014). Selective association of outer surface lipoproteins with the lipid rafts of Borrelia burgdorferi . mBio 5, e00899–14.Google Scholar
Wallich, R., Brenner, C., Kramer, M. & Simon, M. (1995). Molecular-cloning and immunological characterization of a novel linear-plasmid-encoded gene, Pg, of Borrelia burgdorferi expressed only in vivo. Infect Immun 63, 33273335.Google Scholar
Wang, P., Dadhwal, P., Cheng, Z., Zianni, M.R., Rikihisa, Y., Liang, F.T. & Li, X. (2013). Borrelia burgdorferi oxidative stress regulator BosR directly represses lipoproteins primarily expressed in the tick during mammalian infection. Mol Microbiol 89, 11401153.Google Scholar
Yang, X., Hegde, S., Shroder, D.Y., Smith, A.A., Promnares, K., Neelakanta, G., Anderson, J.F., Fikrig, E. & Pal, U. (2013). The lipoprotein La7 contributes to Borrelia burgdorferi persistence in ticks and their transmission to naïve hosts. Microbes Infect 15, 729737.CrossRefGoogle ScholarPubMed