Hostname: page-component-76fb5796d-2lccl Total loading time: 0 Render date: 2024-04-25T14:42:03.324Z Has data issue: false hasContentIssue false

Low-Temperature Cathodoluminescence Investigations of High-Quality Zinc Oxide Nanorods

Published online by Cambridge University Press:  08 April 2015

Bartlomiej S. Witkowski*
Affiliation:
Institute of Physics, Polish Academy of Sciences, Al. Lotników 32/46, 02-668 Warsaw, Poland
Lukasz Wachnicki
Affiliation:
Institute of Physics, Polish Academy of Sciences, Al. Lotników 32/46, 02-668 Warsaw, Poland
Sylwia Gieraltowska
Affiliation:
Institute of Physics, Polish Academy of Sciences, Al. Lotników 32/46, 02-668 Warsaw, Poland
Anna Reszka
Affiliation:
Institute of Physics, Polish Academy of Sciences, Al. Lotników 32/46, 02-668 Warsaw, Poland
Bogdan J. Kowalski
Affiliation:
Institute of Physics, Polish Academy of Sciences, Al. Lotników 32/46, 02-668 Warsaw, Poland
Marek Godlewski
Affiliation:
Institute of Physics, Polish Academy of Sciences, Al. Lotników 32/46, 02-668 Warsaw, Poland Department of Mathematics and Natural Sciences College of Science, Cardinal S. Wyszyński University, Dewajtis 5, 01-815 Warsaw, Poland
*
*Corresponding author. bwitkow@ifpan.edu.pl
Get access

Abstract

We present results of cathodoluminescence (CL) investigations of high-quality zinc oxide (ZnO) nanorods obtained by an extremely fast hydrothermal method on a silicon substrate. A scanning electron microscopy (SEM) system equipped with CL allows direct comparison of SEM images and CL maps, taken from exactly the same areas of samples. Investigations are performed at a temperature of 5 K. An interlink between sample microstructure and emission properties is investigated. CL confirms a very high quality of ZnO nanorods produced by our method. In addition, the presence of super radiation effects in ZnO nanorod arrays is suggested.

Type
Materials Applications
Copyright
© Microscopy Society of America 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bruckbauer, J., Edwards, P.R., Wang, T. & Martin, R.W. (2011). High resolution cathodoluminescence hyperspectral imaging of surface features in InGaN/GaN multiple quantum well structures. Appl Phys Lett 98, 141908.Google Scholar
Chen, Z. & Gao, L. (2006). A facile route to ZnO nanorod arrays using wet chemical method. J Cryst Growth 293, 522527.Google Scholar
Dicke, R.H. (1954). Coherence in spontaneous radiation processes. Phys Rev 93, 99110.Google Scholar
Foley, M., Ton-That, C. & Phillips, M.R. (2010). Luminescent properties of ZnO structures grown with a vapour transport method. Thin Solid Films 518, 42314233.Google Scholar
Gieraltowska, S., Wachnicki, L., Witkowski, B.S., Godlewski, M. & Guziewicz, E. (2012). Atomic layer deposition grown composite dielectric oxides and ZnO for transparent electronic applications. Thin Solid Films 520(14), 46944697.Google Scholar
Gieraltowska, S., Wachnicki, L., Witkowski, B.S., Guziewicz, E. & Godlewski, M. (2013). Thin films of high-k oxides and ZnO for transparent electronic devices. Chem Vapor Depos 19(4–6), 213220.Google Scholar
Greene, L.E., Law, M., Tan, D.H., Montano, M., Goldberger, J., Somorjai, G. & Yang, P.D. (2005). General route to vertical ZnO nanowire arrays using textured ZnO seeds. Nano Lett 5, 12311236.Google Scholar
Guziewicz, E., Godlewski, M., Krajewski, T., Wachnicki, L., Szczepanik, A., Kopalko, K., Wójcik-Głodowska, A., Przeździecka, E., Paszkowicz, W., Lusakowska, E., Kruszewski, P., Huby, N., Tallarida, G. & Ferrari, S. (2009). ZnO grown by atomic layer deposition: A material for transparent electronics and organic heterojunctions. J Appl Phys 105, 122413.Google Scholar
Klingshirn, C., Fallert, J., Zhou, H., Sartor, J., Thiele, C., Maier-Flaig, F., Schneider, D. & Kalt, H. (2010). 65 years of ZnO research—old and very recent results. Phys Status Solidi B 247(6), 14241447.Google Scholar
Krajewski, T., Guziewicz, E., Godlewski, M., Wachnicki, L., Kowalik, I.A., Wojcik-Glodowska, A., Lukasiewicz, M., Kopalko, K., Osinniy, V. & Guziewicz, M. (2009). The influence of growth temperature and precursors’ doses on electrical parameters of ZnO thin films grown by atomic layer deposition technique. Microelectron J 40(2), 293295.Google Scholar
Li, Q., Xu, S.J., Xie, M.H. & Tong, S.Y. (2005). Origin of the ‘S-shaped’ temperature dependence of luminescent peaks from semiconductors. J Phys Condens Matter 17, 48534858.Google Scholar
Luka, G., Godlewski, M., Guziewicz, E., Stakhira, P., Cherpak, V. & Volynyuk, D. (2012). ZnO films grown by atomic layer deposition for organic electronics. Semicond Sci Technol 27, 074006.Google Scholar
Meyer, B.K., Alves, H., Hofmann, D.M., Kriegseis, W., Forster, D., Bertram, F., Christen, J., Hoffmann, A., Straßburg, M., Dworzak, M., Haboeck, U. & Rodina, A.V. (2004). Bound exciton and donor–acceptor pair recombinations in ZnO. Phys Stat Sol B 241(2), 231260.Google Scholar
Ozgur, U., Alivov, Y.I., Liu, C., Teke, A., Reshchikov, M.A., Dogan, S., Avrutin, V., Cho, S.J. & Morkoc, H. (2005). A comprehensive review of ZnO materials and devices. J Appl Phys 98, 041301.Google Scholar
Scully, M.O. & Svidzinsky, A.A. (2009). The super of superradiance. Science 325(5947), 15101511.Google Scholar
Wachnicki, L., Krajewski, T., Luka, G., Witkowski, B., Kowalski, B., Kopalko, K., Domagala, J.Z., Guziewicz, M., Godlewski, M. & Guziewicz, E. (2010). Monocrystalline zinc oxide films grown by atomic layer deposition. Thin Solid Films 518(16), 45564559.Google Scholar
Witkowski, B.S., Wachnicki, L., Gieraltowska, S., Dluzewski, P., Szczepanska, A., Kaszewski, J. & Godlewski, M. (2014). Ultra-fast growth of the monocrystalline zinc oxide nanorods from the aqueous solution. Int J Nanotechnol 11(9–11), 758772.Google Scholar
Witkowski, B.S., Wachnicki, L., Jakiela, R., Guziewicz, E. & Godlewski, M. (2011). Cathodoluminescence measurements at liquid helium temperature of poly- and monocrystalline ZnO films. Acta Phys Pol A 120(6-A), A28A30.Google Scholar
Witkowski, B.S., Wachnicki, L., Nowakowski, P., Suchocki, A. & Godlewski, M. (2013). Temperature-dependence of cathodoluminescence of zinc oxide monolayers obtained by atomic layer deposition. Optica Applicata 43, 187194.Google Scholar
Xu, J., Pan, Q., Shun, Y. & Tian, Z. (2000). Grain size control and gas sensing properties of ZnO gas sensor. Sensor Actuators B Cheml 66(1–3), 277279.Google Scholar
Yu, S.F., Yuen, C., Lau, S.P., Park, W.I. & Yi, G.C. (2004). Random laser action in ZnO nanorod arrays embedded in ZnO epilayers. Appl Phys Lett 84, 3241.Google Scholar