Hostname: page-component-7c8c6479df-ph5wq Total loading time: 0 Render date: 2024-03-29T04:37:18.588Z Has data issue: false hasContentIssue false

Understanding starbursts through giant molecular clouds in high density environments

Published online by Cambridge University Press:  01 August 2006

Erik W. Rosolowsky*
Affiliation:
Harvard-Smithsonian Center for Astrophysics 60 Garden St., MS-66, Cambridge, MA 02138, USA email: erosolow[snail]@cfa.harvard.edu
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Starburst galaxies are characterized by uncommonly high star formation efficiencies, but it remains unclear what physical conditions in the molecular gas produce this high efficiency. Invariably, high star formation efficiency is associated with high column densities of molecular material (e.g. the Kennicutt-Schmidt law), but what are the conditions in the molecular clouds in starburst galaxies? Direct observations of starburst are difficult or impossible with current instruments, so I present the properties of GMCs in the Local Group as a starting case and then extend the analysis of GMC properties to nearby systems with surface densities of gas intermediate between the Local Group and starbursts. Rather than being constant, molecular cloud properties follow a continuum with significant variation across the Local Group and the intermediate surface density systems. Concomitant with these variations in the macroscopic properties are significant changes in the internal pressure and densities of molecular clouds, which implies significant variability in the initial conditions of the star formation process.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2007

References

Blitz, L. 1993, in: Levy, E.H. & Lunine, J.I. (eds.), Protostars and Planets III (Tucson: Univ. Arizona), p. 125Google Scholar
Blitz, L., Fukui, Y., Kawamura, A., Leroy, A., Mizuno, N. & Rosolowsky, E. 2006, in: Reipurth, B.Jewitt, D. & Keil, K. (eds.), Protostars & Planets V, in pressGoogle Scholar
Elmegreen, B. G. 1989, ApJ 338, 178CrossRefGoogle Scholar
Heyer, M. H., Corbelli, E., Schneider, S. E. & Young, J. S. 2004, ApJ 602, 723Google Scholar
Kennicutt, R. C. 1998, ApJ 498, 541Google Scholar
Keto, E., Ho, L. C. & Lo, K.-Y. 2005, ApJ 635, 1062Google Scholar
Kroupa, P. 1995, MNRAS 277, 1522CrossRefGoogle Scholar
Larson, R. B. 1981, MNRAS 194, 809CrossRefGoogle Scholar
Murgia, M., Crapsi, A., Moscadelli, L. & Gregorini, L. 2002, A&A 385, 412Google Scholar
O'Connell, R. W., Gallagher, J. S. III, Hunter, D. A. & Colley, W. N. 1995, ApJ 446, L1CrossRefGoogle Scholar
Oka, T., Hasegawa, T., Sato, F., Tsuboi, M., Miyazaki, A. & Sugimoto, M. 2001, ApJ 562, 348CrossRefGoogle Scholar
Rosolowsky, E. & Blitz, L. 2005, ApJ 623, 826Google Scholar
Rosolowsky, E. & Leroy, A. 2006, PASP 118, 590CrossRefGoogle Scholar
Rubio, M., Lequeux, J. & Boulanger, F. 1993, A&A 271, 9Google Scholar
Shen, J. & Lo, K. Y. 1995, ApJ 445, L99Google Scholar
Solomon, P. M., Rivolo, A. R., Barrett, J. & Yahil, A. 1987, ApJ 319, 730CrossRefGoogle Scholar
Wilson, C. D., Scoville, N., Madden, & , S. C., Charmandaris, V. 2003, ApJ 599, 1049CrossRefGoogle Scholar
Wong, T. & Blitz, L. 2002, ApJ 569, 157CrossRefGoogle Scholar