Hostname: page-component-8448b6f56d-m8qmq Total loading time: 0 Render date: 2024-04-24T10:05:52.429Z Has data issue: false hasContentIssue false

Thermoelectric materials for middle and high temperature ranges

Published online by Cambridge University Press:  01 June 2015

Ryoji Funahashi*
Affiliation:
Inorganic Functional Materials Research Institute, National Institute of Advanced Industrial Science & Technology, 1-8-31 Midorigaoka, Ikeda, Osaka 563-8577, Japan
Tristan Barbier
Affiliation:
Inorganic Functional Materials Research Institute, National Institute of Advanced Industrial Science & Technology, 1-8-31 Midorigaoka, Ikeda, Osaka 563-8577, Japan
Emmanuel Combe
Affiliation:
Inorganic Functional Materials Research Institute, National Institute of Advanced Industrial Science & Technology, 1-8-31 Midorigaoka, Ikeda, Osaka 563-8577, Japan
*
a)Address all correspondence to this author. e-mail: funahashi-r@aist.go.jp
Get access

Abstract

Thermoelectric generation is one of the strongest candidates for recovering the waste heat from industry and transportation. Some of oxides and silicides are considered to be promising thermoelectric materials because of their high oxidation resistance. Several types of modules using p-type Ca3Co4O9/n-type CaMnO3 and p-type MnSi1.75/n-type Mn3Si4Al2 have been prepared and shown around 4 kW/m2 of maximum power density. The present study described the challenging enhancement of the thermoelectric figure of merit ZT of both oxide and silicide compounds. Introduction of secondary phases and low bulk density using a partial melting method is found to be effective for reducing phonon thermal conductivity in the promising Bi2Sr2Co2Ox. The grain size and distribution of the secondary phases can be controlled by optimizing the parameters of the partial melting method. On the other hand, detailed crystallographic structure of a new n-type Mn3Si4Al2 is clarified and leads to the enhancement of the ZT values by elemental substitution.

Type
Review
Copyright
Copyright © Materials Research Society 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

International Energy Agency: World Energy Outlook 2009 Edition (International Energy Agency, Paris, France, 2009); p. 74.Google Scholar
International Energy Agency: World Energy Outlook 2009 Edition (International Energy Agency, Paris, France, 2009); p. 623.Google Scholar
Hirata, M.: Syou Enerugi Ron (Ohmu Sha, Paris, France, 1994); p. 37.Google Scholar
Hesei 16 nendo Shou Enerugi Gijutu Fukyusokushinjigyou Houkokusyo, The Energy Conservation Center, Japan, pp. 7475, 2005, http://www.eccj.or.jp/diffusion/04/diffusion.pdf.Google Scholar
Funahashi, R., Matsubara, I., Ikuta, H., Takeuchi, T., Mizutani, U., and Sodeoka, S.: An oxide single crystal with high thermoelectric performance in air. Jpn. J. Appl. Phys. 39, L1127 (2000).Google Scholar
Funahashi, R. and Shikano, M.: Bi2Sr2Co2Oy whiskers with high thermoelectric figure of merit. Appl. Phys. Lett. 81, 1459 (2002).Google Scholar
Funahashi, R., Matsubara, I., Ikuta, H., Takeuchi, T., and Mizutani, U.: Thermoelectric properties of (Ca, Sr, Bi)2Co2O5 whiskers. Mater. Trans. 42, 956 (2001).Google Scholar
Takeuchi, T., Kondo, T., Soda, K., Mizutani, U., Funahashi, R., Shikano, M., Tsuda, S., Yokoya, T., Shin, S., and Muro, T.: Electronic structure and large thermoelectric power in Ca3Co4O9. J. Electron Spectrosc. Relat. Phenom. 137, 595599 (2004).Google Scholar
Funahashi, R., Urata, S., Mizuno, K., Kouuchi, T., and Mikami, M.: Ca2.7Bi0.3Co4O9/La0.9Bi0.1NiO3 thermoelectric devices with high output power density. Appl. Phys. Lett. 85, 1036 (2004).Google Scholar
Funahashi, R., Mikami, M., Mihara, T., Urata, S., and Ando, N.: Aporable thermoelectric–power–generating module composed of oxide devices. J. Appl. Phys. 99, 066117 (2006).Google Scholar
Yamada, T., Miyazaki, Y., and Yamane, H.: Preparation of higher manganese silicide (HMS) bulk and Fe-containing HMS bulk using a Na-Si melt and their thermoelectrical properties. Thin Solid Films 519, 8524 (2011).Google Scholar
Aoyama, I., Fedorov, M.I., Zaitsev, V.K., Solomkin, F.Y., Eremin, I.S., Samunin, A.Y., Mukoujima, M., Sano, S., and Tsuji, T.: Effects of Ge doping on micromorphology of MnSi in MnSi∼1.7 and on their thermoelectric transport properties. Jpn. J. Appl. Phys. 44, 8562 (2005).Google Scholar
Wolfe, R., Wernick, J.H., and Haszko, S.E.: Thermoelectric properties of FeSi. Phys. Lett. 19, 449 (1965).Google Scholar
Morikawa, K., Chikauchi, H., Mizoguchi, H., and Sugihara, S.: Improvement of thermoelectric properties of β-FeSi2 by the addition of Ta2O5. Mater. Trans. 48, 2100 (2007).Google Scholar
Funahashi, R., Matsumura, Y., Tanaka, H., Takeuchi, T., Norimatsu, W., Combe, E., Suzuki, R.O., Wang, Y., Wan, C., Katsuyama, S., Kusunoki, M., and Koumoto, K.: Thermoelectric properties of n-type Mn3−xCrxSi4Al2 in air. J. Appl. Phys. 112, 073713 (2012).CrossRefGoogle Scholar
Masset, A.C., Michel, C., Maignan, A., Hervieu, M., Toulemonde, O., Studer, F., Raveau, B., and Hejtmanek, J.: Misfit-layered cobaltite with an anisotropic giant magnetoresistance: Ca3Co4O9. Phys. Rev. B 62(1), 166 (2000).Google Scholar
Wang, D., Cheng, L., Yao, Q., and Li, J.: High-temperature thermoelectric properties of Ca3Co4O9+δ with Eu substitution. Solid State Commun. 129, 615 (2004).Google Scholar
Madre, M.A., Costa, F.M., Ferreira, N.M., Sotelo, A., Torres, M.A., Constantinescu, G., Rasekh, Sh., and Diez, J.C.: Preparation of high-performance Ca3Co4O9 thermoelectric ceramics produced by a new two-step method. J. Eur. Ceram. Soc. 33, 1747 (2013).Google Scholar
Funahashi, R., Matsubara, I., and Sodeoka, S.: Complex oxide having high thermoelectric conversion efficiency. US Patent, US6,544,444 B2, 2003.Google Scholar
Combe, E., Funahashi, R., Azough, F., and Freer, R.: Relationship between microstructure and thermoelectric properties of Bi2Sr2Co2Ox bulk materials. J. Mater. Res. 29(12), 1376 (2014).Google Scholar
Itoh, T. and Terasaki, I.: Thermoelectric properties of Bi2.3-xPbxSr2.6Co2Oy single crystals. Jpn. J. Appl. Phys. 39, 6658 (2000).Google Scholar
Terasaki, I., Tanaka, H., Satake, A., Okada, S., and Fujii, T.: Out-of-plane thermal conductivity of the layered thermoelectric oxide Bi2-xPbxSr2Co2Oy. Phys. Rev. B 70, 214106 (2004).Google Scholar
Shin, W. and Murayama, N.: Thermoelectric properties of (Bi,Pb)–Sr–Co–O oxide. J. Mater. Res. 15(2), 382 (2000).Google Scholar
Masuda, Y., Nagahama, D., Itahara, H., Tani, T., Seo, W.S., and Koumoto, K.: Thermoelectric performance of Bi- and Na-substituted Ca3Co4O9 improved through ceramic texturing. J. Mater. Chem. 13(5), 1094 (2003).Google Scholar
Gottlieb, U., Sulpice, A., Lambert-Andron, B., and Laborde, O.: Magnetic properties of single crystalline Mn4Si7. J. Alloys Compd. 361(1), 1318 (2003).Google Scholar
Schwomma, O., Nowotny, H., and Wittmann, A.: Die Kristallstruktur von Mn11Si19 und deren Zusammenhang mit Disilicid-Typen. Monatsh. Chem. 94, 15 (1963) 68.Google Scholar
Schwomma, O., Preisinger, A., Nowotny, H., and Wittmann, A.: Untersuchungen im Dreistoff: Mn−Al−Si. Monatsh. Chem. 95, 737 (1964) 152.Google Scholar
Nikitin, E.N., Tarasov, V.I., and Tamarin, P.V.: Thermal and electrical properties of the higher manganese silicide from 4.2 to 1300 K and its structure. Sov. Phys. Solid State 11, 187189 (1969).Google Scholar
Nikitin, E.N., Tarasov, V.I., Andreev, A.A., and Tamarin, P.V.: Sov. Phys. Solid State 11, 27572758 (1970).Google Scholar
Nishida, I.: Semiconducting properties of nonstoichiometric manganese silicides. J. Mater. Sci. 7, 435440 (1970).Google Scholar
Petricek, V., Dusek, M., and Palatinus, L.: Crystallographic computing system JANA2006 general features. Z. Kristallogr. 229(5), 345352 (2014).Google Scholar
Miyazaki, Y., Igarashi, D., Hayashi, K., Kajitani, T., and Yubuta, K.: Modulated crystal structure of chimney-ladder higher manganese silicides MnSiγ(γ∼1.74). Phys. Rev. B 78, 2141041098-0121.Google Scholar
Rodriguez-Carvajal, J.: Recent advances in magnetic structure determination by neutron powder diffraction. Phys. B 192, 5559 (1993).Google Scholar
Roisnel, T. and Rodriguez-Carvajal, J.: WinPLOTR: A windows tool for powder diffraction pattern analysis. Mater. Sci. Forum 378381, 118123 (2001).Google Scholar
Zaitsev, V.K., Fedorov, M.I., Gurieva, E.A., Eremin, I.S., Konstantinov, P.P., Samunin, A.Y., and Vedernikov, M.V.: Highly effective Mg2Si1−xSnx thermoelectrics. Phys. Rev. B 74, 045207 (2006).Google Scholar
Tani, J. and Kido, H.: Thermoelectric properties of Bi-doped Mg2Si semiconductors. Physica B 364, 218 (2005).Google Scholar
Ponnambalam, V., Morelli, D.T., Bhattacharya, S., and Tritt, T.M.: The role of simultaneous substitution of Cr and Ru on the thermoelectric properties of defect manganese silicides MnSiδ (1.73 < δ < 1.75). J. Alloys Compd. 580, 598603 (2013).Google Scholar
Clementi, E., L Raimondi, D., and P Reinhardt, W.: Atomic screening constants from SCF functions. J. Chem. Phys. 38, 2686 (1963).Google Scholar
Shannon, R.D.: Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallogr., Sect. A 32, 751 (1976).Google Scholar