Hostname: page-component-8448b6f56d-tj2md Total loading time: 0 Render date: 2024-04-19T20:03:17.170Z Has data issue: false hasContentIssue false

The role of mitochondrial DNA to determine the origin of domestic chicken

Published online by Cambridge University Press:  03 June 2015

P. DI LORENZO
Affiliation:
Dipartimento di Scienze Agrarie, Alimentari e Ambientali, Università degli Studi di Perugia, Italy
S. CECCOBELLI
Affiliation:
Dipartimento di Scienze Agrarie, Alimentari e Ambientali, Università degli Studi di Perugia, Italy
F. PANELLA
Affiliation:
Dipartimento di Scienze Agrarie, Alimentari e Ambientali, Università degli Studi di Perugia, Italy
G. ATTARD
Affiliation:
Institute of Earth Systems, University of Malta, Malta
E. LASAGNA*
Affiliation:
Dipartimento di Scienze Agrarie, Alimentari e Ambientali, Università degli Studi di Perugia, Italy
*
Corresponding author: emiliano.lasagna@unipg.it
Get access

Abstract

Mitochondrial DNA (mtDNA) is has recently lost relevance especially when utilised to study species that are characterised with a history of several migrations. Nonetheless, mtDNA can still represents a useful additional tool in the study of molecular genetic diversity. The reason for the adoption of mtDNA is that it is easy to amplify because it appears in multiple copies in the cells and the mitochondrial gene content is strongly conserved across generations. Thousands of published studies have reached conclusions about population history, patterns of gene flow, genetic structure, and species limits, on the basis of mtDNA sequence variation. MtDNA has been used to study phylo-geographic structure of avian species, and to identify the number of maternal lineages and their geographic origins. Most studies of chicken mtDNA rely on sequences of partial control region but recent researches used the complete mtDNA genome to reconstruct the history of animal domestication. The first genetic study on mtDNA suggests that the Indochinese Red Junglefowl subspecies Gallus gallus gallus is the primary ancestor of the domestic chicken (Gallus gallus domesticus). Other studies showed that at least three subspecies of Gallus gallus were enrolled in the origin of domestic chicken breeds, and that there may be at least two domestication centres: one in Southeast Asia and one in the Indian subcontinent. The authors suggested nine highly divergent clades (named clade A-I) related to geographical distribution in a wide range of domestic chickens and Red Junglefowls across Eurasian regions. Understanding when chickens were transported out of domestication centres and the directions in which they were moved provides information about prehistoric human migration, trade routes and cultural diffusion. MtDNA has been used to infer regions of domestication and to identify the number of maternal lineages and their geographic origins in macroevolution studies.

Type
Reviews
Copyright
Copyright © World's Poultry Science Association 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

ACHILLI, A., OLIVIERI, A., PELLECCHIA, M., UBOLDI, C., COLLI, L., AL-ZAHERY, N., ACCETTURO, M., PALA, M., HOOSHIAR KASHANI, B., PEREGO, U.A., BATTAGLIA, V., FORNARINO, S., KALAMATI, J., HOUSHMAND, M., NEGRINI, R., SEMINO, O., RICHARDS, M., MACAULAY, V., FERRETTI, L., BANDELT, H.J, AJMONE-MARSAN, P. and TORRONI, A. (2008) Mitochondrial genomes of extinct aurochs survive in domestic cattle. Current Biology 18: 157-158.CrossRefGoogle ScholarPubMed
ACHILLI, A., BONFIGLIO, S., OLIVIERI, A., MALUSA, A., PALA, M., KASHANI, B.H., PEREGO, U.A., AJMONE-MARSAN, P., LIOTTA, L., SEMINO, O., BANDELT, H.J, FERRETTI, L. and TORRONI, A. (2009) The multifaceted origin of taurine cattle reflected by the mitochondrial genome. PLoS One 4: e5753.CrossRefGoogle ScholarPubMed
ADEBAMBO, A.O., MOBEGI, V.A., MWACHARO, J.M., OLADEJO, B.M., ADEWALE, R.A., ILORI, L.O., MAKANJUOLA, B.O., AFOLAYAN, O., BJØRNSTAD, G., JIANLIN, H. and HANOTTE, O. (2010) Lack of Phylogeographic Structure in Nigerian Village Chickens Revealed by Mitochondrial DNA D-loop Sequence Analysis. International. Journal of. Poultry. Science 9: 503-507.Google Scholar
BERTHOULY, C., LEROY, G., VAN, T.N., THANH, H.H., BED'HOM, B., NGUYEN, B.T., VU, C.C., MONICAT, F., TIXIER-BOICHARD, M., VERRIER, E., MAILLARD, J. and ROGNON, X. (2009) Genetic analysis of local Vietnamese chickens provides evidence of gene flow from wild to domestic populations. BMC genetics 10: 1.CrossRefGoogle ScholarPubMed
BODZSAR, N., EDING, H., REVAY, T., HIDAS, A. and WEIGEND, S. (2009) Genetic diversity of Hungarian indigenous chicken breeds based on microsatellite markers. Animal Genetics 40: 516-523.CrossRefGoogle ScholarPubMed
BONFIGLIO, S., ACHILLI, A., OLIVIERI, A., NEGRINI, R., COLLI, L., LIOTTA, L., AJMONE-MARSAN, P., TORRONI, A. and FERRETTI, L. (2010) The enigmatic origin of bovine mtDNA haplogroup R: sporadic interbreeding or an independent event of Bos primigenius domestication in Italy? PLoS One 5: e15760.CrossRefGoogle ScholarPubMed
CECCOBELLI, S., DI LORENZO, P., LANCIONI, H., CASTELLINI, C., MONTEAGUDO IBÁÑEZ, L.V., SABBIONI, A., SARTI, F.M., WEIGEND, S. and LASAGNA, E. (2013) Phylogeny, genetic relationships and population structure of five Italian local chicken breeds. Italian Journal of Animal Science 12: 410-417.CrossRefGoogle Scholar
CUC, N.T.K., SIMIANER, H., EDING, H., TIEU, H.V., CUONG, V.C., WOLLNY, B.A., GROENEVELD, L.F. and WEIGEND, S. (2010) Assessing genetic diversity of Vietnamese local chicken breeds using microsatellites. Animal Genetics 41: 545-547.CrossRefGoogle ScholarPubMed
CRAWFORD, R.D. (1984) Domestic fowl, in: MASON, I.L. (Ed) Evolution of domesticated animals, pp. 298-311 (London: Longman).Google Scholar
CRAWFORD, R.D. (1990) Origin and history of poultry species. Elsevier 1-8.Google Scholar
DARWIN, C. (1896) . The Variation of Animals and Plants under Domestication. 2nd edn. Vol. 1, D. Appleton: New York.Google Scholar
DELACOUR, J. (1977) The pheasants of the world. Surrey: SAIGA Publishing Co., Ltd.Google Scholar
ELTANANY, M., PHILIPP, U., WEIGEND, S. and DISTL, O. (2011) Genetic diversity of tem Egyptian chicken strains using 29 microsatellite markers. Animal genetics 42: 666-669.CrossRefGoogle Scholar
ERIKSSON, J., LARSON, G., GUNNARSSON, U., BED'HOM, B., TIXIER-BOICHARD, M., STRÖMSTEDT, L., WRIGHT, D., JUNGERIUS, A., VEREIJKEN, A., RANDI, E., JENSEN, P. and ANDERSSON, L. (2008) Identification of the yellow skin gene reveals a hybrid origin of the domestic chicken. PLoS Genetics 4: e1000010.CrossRefGoogle ScholarPubMed
FAO (2007) The State of the World's Animal Genetic Resources for Food and Agriculture.Google Scholar
FEULNER, P.G.D., BIELFELDT, W., ZACHOS, F.E., BRADVAROVIC, J., ECKERT, I. and HARTL, G.B. (2004) Mitochondrial DNA and microsatellite analyses of the genetic status of the presumed subspecies Cervus elaphus montanus (Carpathian red deer). Heredity 93: 299-306.CrossRefGoogle ScholarPubMed
FUMIHITO, A., MIYAKE, T., SUMI, S., TAKADA, M., OHNO, S. and KONDO, N. (1994) One subspecies of the red junglefowl (Gallus gallus gallus) suffices as the matriarchic ancestor of all domestic breeds. Proceedings of the National Academy of Sciences USA 91: 12505-12509.CrossRefGoogle Scholar
FUMIHITO, A., MIYAKE, T., TAKADA, M., SHINGU, R., ENDO, T., GOJOBORI, T., KONDO, N. and OHNO, S. (1996) Monophyletic origin and unique dispersal patterns of domestic fowls. Proceedings of the National Academy of Sciences USA 93: 6792-6795.CrossRefGoogle Scholar
GALTIER, N., NABHOLZ, B., GLEMIN, S. and HURST, G.D.D. (2009) Mitochondrial DNA as a marker of molecular diversity: a reappraisal. Molecular Ecology 18: 4541-4550.CrossRefGoogle ScholarPubMed
GHOLAMI, M., ERBE, M., GÄRKE, C., PREISINGER, R., WEIGEND, A., WEIGEND, S. and SIMIANER, H. (2014) Population Genomic Analyses Based on 1 Million SNPs in Commercial Egg Layers. PloS one 9: e94509.CrossRefGoogle ScholarPubMed
GISSI, C., IANNELLI, F. and PESOLE, G. (2008) Evolution of the mitochondrial genome of Metazoa as exemplified by comparison of congeneric species. Heredity 101: 301-320.Google ScholarPubMed
GORAGA, Z., WEIGEND, S. and BROCKMANN, G. (2012) Genetic diversity and population structure of five Ethiopian chicken ecotypes. Animal genetics 43: 454-457.CrossRefGoogle ScholarPubMed
GRANEVITZE, Z., DAVID, L., TWITO, T., WEIGEND, S., FELDMAN, M. and HILLEL, J. (2014) Phylogenetic resolution power of microsatellites and various single-nucleotide polymorphism types assessed in 10 divergent chicken populations. Animal genetics 45: 87-95.Google ScholarPubMed
GROENEN, M.A., WAHLBERG, P., FOGLIO, M., CHENG, H.H., MEGENS, H.J., CROOIJMANS, R.P., BESNIER, F., LATHROP, M., MUIR, W.M., WONG, G.K.S., GUT, I. and ANDERSSON, L. (2009) A high-density SNP-based linkage map of the chicken genome reveals sequence features correlated with recombination rate. Genome Research 19: 510-519.CrossRefGoogle ScholarPubMed
GROENEVELD, L.F., LENSTRA, J.A., EDING, H., TORO, M.A., SCHERF, B., PILLING, D., NEGRINI, R., FINLAY, E.K., JIANLIN, H., GROENEVELD, E., WEIGEND, S. and THE GLOBALDIV CONSORTIUM (2010) Genetic diversity in farm animals-a review. Animal Genetics 41: 6-31.CrossRefGoogle ScholarPubMed
HILLEL, J., GROENEN, M.A., TIXIER-BOICHARD, M., KOROL, A.B., DAVID, L., KIRZHNER, V.M., BURKE, T., BARRE-DIRIE, A., CROOIJMANS, R.P.M.A., ELO, K., FELDMAN, M.W., FREIDLIN, P.J., MÄKI-TANILA, A., OORTWIJN, M., THOMSON, P., VIGNAL, A., WIMMERS, K. and WEIGEND, S. (2003) Biodiversity of 52 chicken populations assessed by microsatellite typing of DNA pools. Genetics Selection Evolution 35: 533-558.CrossRefGoogle ScholarPubMed
INTERNATIONAL CHICKEN GENOME SEQUENCING CONSORTIUM. (2004) Sequence and comparative analysis of chicken genome provide unique perspectives on vertebrate evolution. Nature 432: 695-716.CrossRefGoogle Scholar
JOHNSGARD, P.A. (1999) The pheasants of the world, biology and natural history Smithsonian Institution Press, Washington, District of Columbia 432.Google Scholar
KANGINAKUDRU, S., METTA, M., JAKATI, R.D. and NAGARAJU, J. (2008) Genetic evidence from Indian red jungle fowl corroborates multiple domestication of modern day chicken. Evolutionary Biology 8: 174.Google ScholarPubMed
LANCIONI, H., DI LORENZO, P., CECCOBELLI, S., PEREGO, U.A, MIGLIO, A., LANDI, V., ANTOGNONI, M.T., SARTI, F.M., LASAGNA, E. and ACHILLI, A. (2013) Phylogenetic relationships of three Italian merino-derived sheep breeds evaluated through a complete mitogenome analysis. PLoS One 8: e73712.Google ScholarPubMed
LEROY, G., KAYANG, B.B., YOUSSAO, I.A., YAPI-GNAORÉ, C.V., OSEI-AMPONSAH, R., N'GORAN, E.L., FOTSA, J.C., BENABDELJELI, K., BED'HOM, B., TIXIER-BOICHARD, M. and ROGNON, X. (2012) Gene diversity, agroecological structure and introgression patterns among village chicken populations across North, West and Central Africa. BMC genetics 13: 34.Google ScholarPubMed
LIU, Y.P., WU, G.S., YAO, Y.G., MIAO, Y.W., LUIKART, G., BAIG, M., BEJA-PEREIRA, A., DING, Z.L., GOUNDER PALANICHAMY, M. and ZHANG, Y.P. (2006) Multiple maternal origins of chickens: out of the Asian jungles. Molecular Phylogenetics and Evolution 38: 12-19.CrossRefGoogle ScholarPubMed
MACDONALD, K.C. and BLENCH, R.M. (2000) Chickens, in: KIPLE, K.F. & ORNELAS, K.C. (Eds) The Cambridge World History of Food, pp. 1: 496-499 (Cambridge University Press: Cambridge).Google Scholar
MIAO, Y.W., PENG, M.S, WU, G.S., OUYANG, Y.N., YANG, Z.Y., YU, N., LIANG, J.P., PIANCHOU, G., BEJA-PEREIRA, A., MITRA, B., PALANICHAMY, M.G., BAIG, M., CHAUDHURI, T.K., SHEN, Y.Y., KONG, Q.P., MURPHY, R.W., YAO, Y.G. and ZHANG, Y.P. (2013) Chicken domestication: an updated perspective based on mitochondrial genomes. Heredity 110: 277-282.CrossRefGoogle ScholarPubMed
MUCHADEYI, F.C., EDING, H., SIMIANER, H., WOLLNY, C.B.A., GROENEVELD, E. and WEIGEND, S. (2008) Mitochondrial DNA D-loop sequences suggest a Southeast Asian and Indian origin of Zimbabwean village chickens. Animal Genetics 39: 615-622.CrossRefGoogle ScholarPubMed
MUIR, W.M., WONG, G.K.S., ZHANG, Y., WANG, J., GROENEN, M.A., CROOIJMANS, R.P., MEGENSD, H.J., ZHANGE, H., OKIMOTOF, R., VEREIJKENG, A., JUNGERIUS, A., ALBERSG, G.A.A., LAWLEYH, C.T., DELANYI, M.E., MACEACHERNE, S. and CHENGE, H.H. (2008) Genome-wide assessment of worldwide chicken SNP genetic diversity indicates significant absence of rare alleles in commercial breeds. Proceedings National Academy of Sciences 105: 17312-17317.CrossRefGoogle Scholar
NISHIBORI, M., SHIMOGIRI, T., HAYASHI, T. and YASUE, H. (2005) Molecular evidence for hybridisation of species in the genus Gallus except for Gallus varius. Animal Genetics 36: 367-375.CrossRefGoogle ScholarPubMed
NGO THIM, K.C., MUCHADEYI, F.C., BAULAIN, U., EDING, H., WEIGEND, S. and WOLLNY, C.B.A. (2006) An assessment of genetic diversity of Vietnamese H'mong chickens. International Journal of Poultry Science 5: 912-920.Google Scholar
OKA, T., INO, Y., NOMURA, K., KAWASHIMA, S., KUWAYAMA, T., HANADA, H., AMANO, T., TAKADA, M., TAKAHATA, N., HAYASHI, Y. and AKISHINONOMIYA, F. (2007) Analysis of mtDNA sequences shows Japanese native chickens have multiple origins. Animal Genetics 38: 287-293.CrossRefGoogle ScholarPubMed
PHAM, M.H., BERTHOULY-SALAZAR, C., TRAN, X.H., CHANG, W.H., CROOIJMANS, R.P.M.A., LIN, D.Y., HOANG, V.T., LEE, Y.P., TIXIER-BOICHARD, M. and CHEN, C.F. (2013) Genetic diversity of Vietnamese domestic chicken populations as decision making support for conservation strategies. Animal genetics 44: 509-521.CrossRefGoogle ScholarPubMed
PETERS, J.P. (1913) The cock. Journal of the American Oriental Society 33: 363-401.Google Scholar
RAZAFINDRAIBE, H., MOBEGI, V.A., OMMEH, S.C., RAKOTONDRAVAO, M.L., BJØRNSTAD, G., HANOTTE, O. and JIANLIN, H. (2008) Mitochondrial DNA Origin of Indigenous Malagasy Chicken. Animal Biodiversity and Emerging Diseases 1149: 77-79.Google Scholar
SIBLEY, C.G. and AHLQUIST, J.E. (1990) Phylogeny and classification of birds: a study in molecular evolution. Yale University Press.CrossRefGoogle Scholar
SILVA, P., GUAN, X., HO-SHING, O., JONES, J., XU, J., HUI, D., NOTTER, D. and SMITH, E. (2008) Mitochondrial DNA-based analysis of genetic variation and relatedness among Sri Lankan indigenous chickens and the Ceylon Junglefowl (Gallus lafayetti). Animal Genetics 40: 1-9.CrossRefGoogle ScholarPubMed
SIWEK, M., WRAGG, D., SŁAWIŃSKA, A., MALEK, M., HANOTTE, O. and MWACHARO, J.M. (2013) Insights into the genetic history of Green-legged Partridgelike fowl: mtDNA and genome-wide SNP analysis. Animal genetics 44: 522-532.Google ScholarPubMed
STOREY, A.A., LADEFOGED, T.N. and MATISOO-SMITH, E.A. (2008) Counting Your Chickens: Density and Distribution of Chicken Remains in Archaeological Sites of Oceania. International Journal of Osteoarchaeology 18: 240-261.CrossRefGoogle Scholar
STOREY, A.A., STEPHEN, A.J., BRYANT, D., CARSON, M., EMERY, K., DE FRANCE, S., HIGHAM, C., HUYNEN, L., INTOH, M., JONES, S., KIRCH, P.V., LADEFOGED, T., MCCOY, P., MORALES-MUNIZ, A., QUIROZ, D., REITZ, E., ROBINS, J., WALTER, R. and MATISOO-SMITH, E. (2012) Investigating the global dispersal of chickens in prehistory using ancient mitochondrial DNA signatures. PLoS ONE 7: e39171.CrossRefGoogle ScholarPubMed
THOMSON, V.A., LEBRASSEUR, O., AUSTIN, J.J., HUNT, T.L., BURNEY, D.A., DENHAM, T., RAWLENCE, N.J., WOOD, J.R., GONGORA, J., FLINK, L.G., LINDERHOLM, A., DOBNEY, K., LARSON, G. and COOPER, A. (2014) Using ancient DNA to study the origins and dispersal of ancestral Polynesian chickens across the Pacific. Proceedings National Academy of Sciences 111: 4826-4831.CrossRefGoogle Scholar
WILKINSON, S., WIENER, P., TEVERSON, D., HALEY, C.S. and HOCKING, P.M. (2012) Characterisation of the genetic diversity, structure and admixture of British chicken breeds. Animal genetics 43: 552-563.CrossRefGoogle ScholarPubMed
WU, G.S., YAO, Y.G., QU, K.X., DING, Z.L., LI, H., PALANICHAMY, M.G., DUAN, Z.Y., LI, N., CHEN, Y.S. and ZHANG, Y.P. (2007) Population phylogenomic analysis of mitochondrial DNA in wild boars and domestic pigs revealed multiple domestication events in East Asia. Genome Biology and Evolution 8: 245.CrossRefGoogle ScholarPubMed
ZANETTI, E., DE MARCHI, M., ABBADI, M. and CASSANDRO, M. (2011) Variation of genetic diversity over time in local Italian chicken breeds undergoing in situ conservation. Poultry Science 90: 2195-2201.CrossRefGoogle ScholarPubMed
ZINK, R.M. and BARROWCLOUGH, G.F. (2008) Mitochondrial DNA under siege in avian phylogeography. Molecular Ecology 17: 2107-2121.CrossRefGoogle ScholarPubMed