Hostname: page-component-7c8c6479df-fqc5m Total loading time: 0 Render date: 2024-03-29T06:58:01.067Z Has data issue: false hasContentIssue false

ISM turbulence driven by the magnetorotational instability

Published online by Cambridge University Press:  01 August 2006

Robert A. Piontek
Affiliation:
Astrophysikalisches Institut Potsdam, An der Sternwarte 16, D-14482 Potsdam, Germany email: rpiontek@aip.de Department of Astronomy, University of Maryland, College Park, MD 20742-2421 email: ostriker@astro.umd.edu
Eve C. Ostriker
Affiliation:
Department of Astronomy, University of Maryland, College Park, MD 20742-2421 email: ostriker@astro.umd.edu
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We have performed numerical simulations which were designed to further our understanding of the turbulent interstellar medium (ISM). Our simulations include a multi-phase thermodynamic model of the ISM, magnetic fields, and sheared rotation, allowing us to study the effects of the magnetorotational instability (MRI) in an environment containing high density cold clouds embedded in a warm, low density, ambient medium. These models have shown that the MRI is indeed a significant source of turbulence, particularly at low mean densities typical of the outer regions of the Milky Way, where star formation rates are low, but high levels of turbulence persist. Here, we summarize past findings, as well as our most recent models which include vertical stratification, allowing us to self-consistently model the vertical distribution of material in the disk.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2007

References

Cox, D. P., & Smith, B. W. 1974, ApJ 189, L105CrossRefGoogle Scholar
Dickey, J. M., Hanson, M. M., & Helou, G. 1990, ApJ 352, 522CrossRefGoogle Scholar
Field, G. B., Goldsmith, D. W., & Habing, H. J. 1969, ApJL 155, L149CrossRefGoogle Scholar
Field, G. B. 1965, ApJ 142, 531CrossRefGoogle Scholar
Hawley, J. F., & Balbus, S. A. 1992, ApJ 400, 595CrossRefGoogle Scholar
Hawley, J. F., Gammie, C. F., & Balbus, S. A. 1995, ApJ 440, 742CrossRefGoogle Scholar
Heiles, C., & Troland, T. H. 2003, ApJ 586, 1067CrossRefGoogle Scholar
McKee, C. F., & Ostriker, J. P. 1977, ApJ 218, 148CrossRefGoogle Scholar
Piontek, R. A., & Ostriker, E. C. 2004, ApJ 601, 905CrossRefGoogle Scholar
Piontek, R. A., & Ostriker, E. C. 2005, ApJ 629, 849CrossRefGoogle Scholar
Sánchez-Salcedo, F. J., Vázquez-Semadeni, E., & Gazol, A. 2002, ApJ 577, 768CrossRefGoogle Scholar
Sellwood, J. A., & Balbus, S. A. 1999, ApJ 511, 660CrossRefGoogle Scholar
Spitzer, L. 1978, Physical processes in the interstellar medium (New York Wiley-Interscience), p. 333Google Scholar
Stone, J. M., & Norman, M. L. 1992a, ApJS 80, 753CrossRefGoogle Scholar
Stone, J. M., & Norman, M. L. 1992b, ApJS 80, 791CrossRefGoogle Scholar
Stone, J. M., Hawley, J. F., Gammie, C. F., & Balbus, S. A. 1996, ApJ 463, 656CrossRefGoogle Scholar
Wolfire, M. G., McKee, C. F., Hollenbach, D., & Tielens, A. G. G. M. 2003, ApJ 587, 278CrossRefGoogle Scholar