Hostname: page-component-76fb5796d-r6qrq Total loading time: 0 Render date: 2024-04-26T05:41:32.894Z Has data issue: false hasContentIssue false

Roll-to-Roll Coating by Liquid Flame Spray Nanoparticle Deposition

Published online by Cambridge University Press:  28 May 2015

Jyrki M. Mäkelä
Affiliation:
Aerosol Physics Laboratory Tampere University of Technology, P.O.Box 589, FI-33101 Tampere, Finland.
Janne Haapanen
Affiliation:
Aerosol Physics Laboratory Tampere University of Technology, P.O.Box 589, FI-33101 Tampere, Finland.
Mikko Aromaa
Affiliation:
Aerosol Physics Laboratory Tampere University of Technology, P.O.Box 589, FI-33101 Tampere, Finland.
Hannu Teisala
Affiliation:
Paper Converting and Packaging Technology, Tampere University of Technology, P.O.Box 589, FI-33101 Tampere, Finland.
Mikko Tuominen
Affiliation:
Paper Converting and Packaging Technology, Tampere University of Technology, P.O.Box 589, FI-33101 Tampere, Finland.
Milena Stepien
Affiliation:
Laboratory of Paper Coating and Converting and Center of Functional Materials, Åbo Akademi University, Porthaninkatu 3, FI-20500 Turku, Finland.
Jarkko J. Saarinen
Affiliation:
Laboratory of Paper Coating and Converting and Center of Functional Materials, Åbo Akademi University, Porthaninkatu 3, FI-20500 Turku, Finland.
Martti Toivakka
Affiliation:
Laboratory of Paper Coating and Converting and Center of Functional Materials, Åbo Akademi University, Porthaninkatu 3, FI-20500 Turku, Finland.
Jurkka Kuusipalo
Affiliation:
Paper Converting and Packaging Technology, Tampere University of Technology, P.O.Box 589, FI-33101 Tampere, Finland.
Get access

Abstract

Nanostructured coatings have been prepared on a flexible, moving paperboard using deposition of ca. 10-50-nm-sized titanium dioxide and silicon dioxide nanoparticles generated by a liquid flame spray process, directly above the paperboard, to achieve improved functional properties for the material. With moderately high production rate (∼ g/min), the method is applicable for thin aerosol coating of large area surfaces. LFS-made nanocoating can be synthesized e.g. on paper, board or polymer film in roll-to-roll process. The degree of particle agglomeration is governed by both physicochemical properties of the particle material and residence time in aerosol phase prior to deposition. By adjusting the speed of the substrate, even heat sensitive materials can be coated. In this study, nanoparticles were deposited directly on a moving paperboard with line speeds 50-300 m/min. Functional properties of the nanocoating can be varied by changing nanoparticle material; e.g. TiO2 and SiO2 are used for changing the surface wetting properties. If the liquid precursors are dissolved in one solution, synthesis of multi component nanoparticle coatings is possible in a one phase process. Here, we present analysis of the properties of LFS-fabricated nanocoatings on paperboard. The thermophoretic flux of nanoparticles is estimated to be very high from the hot flame onto the cold substrate. A highly hydrophobic coating was obtained by a mass loading in the order of 50–100 mg/m2 of titanium dioxide on the paperboard.

Type
Articles
Copyright
Copyright © Materials Research Society 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Ulrich, D.G. (1971), Combust. Sci. Technol., 4: 4757.CrossRefGoogle Scholar
Kammler, H.K., Mädler, L., Pratsinis, S.E. (2001), Chem. Eng. Tech 24: 583596.3.0.CO;2-H>CrossRefGoogle Scholar
Maedler, L., Roessler, A., Pratsinis, S. E., Sahm, T., Gurlo, A., Barsan, N., and Weimar, U. (2006). Sensor Actuator B, 114:283295 CrossRefGoogle Scholar
Pimenoff, J.A., Hovinen, A.K., and Rajala, M.J., (2009), Thin Solid Films, 517: 30573060.CrossRefGoogle Scholar
Tricoli, A., Graf, M., Mayer, F., Kühne, S., Hierlemann, A., and Pratsinis, S.E., 2008, Advanced Materials 20: 30053010.CrossRefGoogle Scholar
Keskinen, H., Mäkelä, J.M., Aromaa, M., Ristimäki, J., Kanerva, T., Levänen, E., Mäntylä, T., and Keskinen, J., (2007), Journal of Nanoparticle Research, 9, 569588.CrossRefGoogle Scholar
Teisala, H., Tuominen, M., Aromaa, M., Mäkelä, J.M., Stepien, M., Saarinen, J.J., Toivakka, M., and Kuusipalo, J. (2010), Surface and Coatings Technology, 205 (2010) 436445.CrossRefGoogle Scholar
Tuominen, M., Lahti, J. and Kuusipalo, J. (2011), TAPPI Journal 10, 2937.Google Scholar
Kuusipalo, J. (Ed.) (2008) Paper and Board Converting. Papermaking Science and Technology, Book 12, 2th Ed. Gummerus Printing, Jyväskylä, Finland.Google Scholar
Keskinen, H., Mäkelä, J.M., Heikkinen, R., Suopanki, A., Keskinen, J. (2007) Synthesis of Pd-alumina and Pd-lanthana suspension for catalytic applications by one-step Liquid Flame Spray. Catalysis Letters 119: 172178.CrossRefGoogle Scholar
Mäkelä, J. M., Aromaa, M., Teisala, H., Tuominen, M., Stepien, M., Saarinen, J.J., Toivakka, M., and Kuusipalo, J. (2011) Nanoparticle Deposition from Liquid Flame Spray Onto Moving Roll-to-roll Paperboard Material, Aerosol Sci Technol. 45(7): 827837.CrossRefGoogle Scholar
Aromaa, M., Arffman, A., Suhonen, H., Haapanen, J., Keskinen, J., Honkanen, M., Nikkanen, J.-P., Levänen, E., Messing, M.E. Deppert, K., Teisala, H., Tuominen, M. Kuusipalo, J., Stepien, M., Saarinen, J.J., Toivakka, M. and Mäkelä, J.M.. J. Aerosol Sci. 52 (2012), 5768.CrossRefGoogle Scholar
Teisala, H., Tuominen, M., Haapanen, J., Aromaa, M., Stepien, M., Mäkelä, J. M., Saarinen, J. J., Toivakka, M., Kuusipalo, J. (2014), Review on Liquid Flame Spray in Paper Converting: Multifunctional Superhydrophobic Nanoparticle Coatings, Nordic Pulp Paper Res. J. In press.CrossRefGoogle Scholar
Tuominen, M., Teisala, H., Aromaa, M., Stepien, M., Mäkelä, J.M., Saarinen, J.J., Toivakka, M., Kuusipalo, J. (2014) J. Adhesion Sci. Technol. 28, 864879.CrossRefGoogle Scholar
Haapanen, J., Aromaa, M., Teisala, H, Tuominen, M., Stepien, M., Saarinen, J.J., Heikkilä, M.J., Toivakka, M., Kuusipalo, J., and Mäkelä, J.M. (2015) Binary TiO2/SiO2 nanoparticle coating for controlling the wetting properties of paperboard, Materials Chemistry and Physics, 149-150:230237.CrossRefGoogle Scholar
Stepien, M. Saarinen, J.J., Teisala, H., Tuominen, M., Haapanen, J. Mäkelä, J.M., Kuusipalo, J, and Toivakka, M. (2013) Nanoscale Res Lett. 8, 444449.CrossRefGoogle Scholar
Stepien, M., Chinga-Carrasco, G., Saarinen, J.J., Teisala, H., Tuominen, M., Aromaa, M., Haapanen, J., Kuusipalo, J., Mäkelä, J.M. and Toivakka, M. (2013), Wear, 307 ,112118.CrossRefGoogle Scholar
Stepien, M., Saarinen, J. J., Teisala, H., Tuominen, M., Aromaa, M., Haapanen, J., Kuusipalo, J., Mäkelä, J. M., Toivakka, M. (2013), Langmuir 29, 37803790.CrossRefGoogle Scholar