Hostname: page-component-76fb5796d-5g6vh Total loading time: 0 Render date: 2024-04-26T12:26:59.168Z Has data issue: false hasContentIssue false

Has the Earth been exposed to numerous supernovae within the last 300 kyr?

Published online by Cambridge University Press:  06 November 2014

Adrian L. Melott*
Affiliation:
Department of Physics and Astronomy, University of Kansas, USA
Ilya G. Usoskin
Affiliation:
ReSoLVE Center of Excellence and Sodankylä Geophysical Observatory (Oulu unit) University of Oulu, Finland
Gennady A. Kovaltsov
Affiliation:
Ioffe Physical-Technical Institute, St. Petersburg, Russia
Claude M. Laird
Affiliation:
University of Kansas, 1010 E 450 Rd, Lawrence, KS 66047, USA
*

Abstract

Firestone (2014) asserted evidence for numerous (23) nearby (d < 300 pc) supernovae (SNe) within the Middle and Late Pleistocene. If true, this would have strong implications for the irradiation of the Earth; at this rate, the mass extinction level events due to SNe would be more frequent than 100 Myr. However, there are numerous errors in the application of past research. The paper overestimates likely nitrate and 14C production from moderately nearby SNe by about four orders of magnitude. Moreover, the results are based on wrongly selected (obsolete) nitrate and 14C datasets. The use of correct and up-to-date datasets does not confirm the claimed results. The claims in the paper are invalid.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bambach, R.K. (2006). Phanerozoic biodiversity mass extinctions. Annu. Rev. Earth Planet. Sci. 34, 127155.Google Scholar
Bishop, S. et al. (2013). American Physical Society Abstract: X8.00002 : Search for Supernova 60Fe in the Earth's Fossil Record; see also Nature News. doi: 10.1038/nature.2013.12797 Google Scholar
Draine, B. (2010). Physics of the Interstellar and Intergalactic Medium. Princeton University Press, Princeton, N.J. USA, pp. 434435.Google Scholar
Dreschhoff, G. & Laird, C. (2006). Evidence for a stratigraphic record of supernovae in polar ice. Adv. Space Res. 38, 1307.Google Scholar
Dreschhoff, G.A.M., Zeller, E.J. & Parker, B.C. (1983). Past solar activity variation reflected in nitrate concentrations in Antarctic ice. In Weather and Climate Responses to Solar Variations, ed. McCormac, B.M., pp. 225236. Colorado Associated University Press, Boulder.Google Scholar
Ejzak, L.M. et al. (2007). Terrestrial consequences of spectral and temporal variability in ionizing photon events. Astrophys. J. 654, 373384.Google Scholar
Erlykin, A.D. & Wolfendale, A.W. (2010). Long term time variability of cosmic rays and possible relevance to the development of life on Earth. Surv. Geophys. 31, 383398.Google Scholar
Fields, B.D. (2004). Live radioisotopes as signatures of nearby supernovae. New Astron. Rev. 48, 119.Google Scholar
Firestone, R.B. (2014). Observation of 23 Supernovae that exploded < 300 pc from Earth during the past 300 kyr. Astrophys. J. 789, 2940 Google Scholar
Fry, B.J., Fields, B.D. & Ellis, J.R. (2014). Astrophysical Shrapnel: Discriminating Among Extra-solar Sources of Live Radioactive Isotopes. Preprint astro-ph arXiv:1405.4310.Google Scholar
Gehrels, N., Laird, C.M., Jackman, C.H., Cannizzo, J.K., Mattson, B.J. & Chen, W. (2003). Ozone depletion from nearby supernovae. Astrophys. J. 585, 11691176.Google Scholar
Green, D.A. (2004). Galactic supernova remnants: an updated catalogue and some statistics. Bull. Astron. Soc. India 32, 335370.Google Scholar
Green, D.A. (2014). A catalogue of 294 Galactic supernova remnants. arXiv:1409.0637 [astro-ph.HE] Bull. Astron. Soc. India, in press.Google Scholar
Hughen, K.A., Lehman, S.J., Southon, J., Overpeck, J.T., Marchal, O., Herring, C. & Turnbull, J. (2004). 14C activity and global carbon cycle changes over the past 50,000 years. Science 303, 202207.Google Scholar
Hughen, K. et al. (2006). Marine-derived 14C calibration and activity record for the past 50,000 years updated from the Cariaco Basin. Q. Sci. Rev. 25, 32163227.Google Scholar
Kovaltsov, G.A., Mishev, A. & Usoskin, I.G. (2012). A new model of cosmogenic production of radiocarbon 14C in the atmosphere. Earth Planet. Sci. Lett. 337, 114120.Google Scholar
Levan, A.J. et al. (2013). Superluminous X-rays from a superluminous supernova. Astrophys. J. 771, 136146.Google Scholar
Lingenfelter, R.E. & Ramaty, R. (1970). Astrophysical and geophysical variations in the C14 production, in Olsson, I.U., ed., Radiocarbon variations and absolute chronology, New York, John Wiley and Sons, pp 513537.Google Scholar
Melott, A.L. & Thomas, B.C. (2009). Late Ordovician geographic patterns of extinction compared with simulations of astrophysical ionizing radiation damage. Paleobiology 35, 311320.Google Scholar
Melott, A.L. & Thomas, B.C. (2011). Astrophysical ionizing radiation and the earth: a brief review and census of intermittent intense sources. Astrobiology 11, 343361. Google Scholar
Melott, A.L., Lieberman, B.S., Laird, C.M., Martin, L.D., Medvedev, M.V., Thomas, B.C., Cannizzo, J.K., Gehrels, N. & Jackman, C.H. (2004). Did a gamma-ray burst initiate the late Ordovician mass extinction? Int. J. Astrobiol. 3, 5561.Google Scholar
Miyake, F. et al. (2013). Another rapid event in the carbon-14 content of tree rings. Nature Commun. 4, 1748.Google Scholar
Pavlov, A.K. et al. (2013). AD 775 pulse of cosmogenic radionuclides production as imprint of a Galactic gamma-ray burst. Mon. Not. R. Astron. Soc. 435, 28782884.Google Scholar
Reimer, P.J., Baillie, M.G.L., Bard, E. Bayliss, A., Beck, J.W., Bertrand, C.J.H., Bertrand, Blackwell, P.G., Buck, C.E., Burr, G.S., Cutler, K.B., Damon, P.E., Edwards, R.L., Fairbanks, R.G., Friedrich, M., Guilderson, T.P., Hogg, A.G., Hughen, K.A., Kromer, B., McCormac, G., Manning, S., Ramsey, C.B., Reimer, R.W., Remmele, S., Southon, J.R., Stuiver, M., Talamo, S., Taylor, F.W., van der Plicht, J. & Weyhenmeyer, C.E. (2004). IntCal04 terrestrial radiocarbon age calibration, 0-26 cal kyr BP. Radiocarbon 46, 10291058.Google Scholar
Reimer, P. et al. (2013). IntCal13 and MARINE13 radiocarbon age calibration curves 0-50000 years cal BP. Radiocarbon 55(4), 1869.Google Scholar
Rood, R.T. et al. (1979). X- or γ rays from Supernovae in glacial ice. Nature 282, 701703.Google Scholar
Snowball, I. & Muscheler, R. (2007). Palaeomagnetic intensity data: an Achilles heel of solar activity reconstructions. Holocene 17, 851.Google Scholar
Soderberg, A.M. et al. (2008). An extremely luminous X-ray outburst at the birth of a supernova. Nature 453, 469474.Google Scholar
Solanki, S.K., Usoskin, I.G., Kromer, B., Schüssler, M. & Beer, J. (2004). Unusual activity of the Sun during recent decades compared to the previous 11,000 years, Nature, 431, 10841087.Google Scholar
Thomas, B.C., Jackman, C.H. & Melott, A.L. (2007). Modeling atmospheric effects of the September 1859 Solar Flare. Geophys. Res. Lett. 34, L06810. doi: 10.1029/2006GL029174.Google Scholar
Usoskin, I.G., Solanki, S.K. & Kovaltsov, G.A. (2007). Grand minima and maxima of solar activity: new observational constraints. Astron. Astrophys., 471, 301309.Google Scholar
Usoskin, I.G. (2013). A history of solar activity over millennia, Living Rev. Solar Phys., 10, 1.Google Scholar
Usoskin, I.G. et al. (2013). The AD775 cosmic event revisited: the Sun is to blame. Astron. Astrophys. 552, L3.Google Scholar
Usoskin, I.G. et al. (2014). Evidence for distinct modes of solar activity. Astron. Astrophys. 562, L10.Google Scholar
Vonmoos, et al. (2006). Large variations in Holocene solar activity: constraints from 10Be in the Greenland Ice Core Project ice core. J. Geophys. Res. 111, A10105.Google Scholar
Wheeler, J.C. (2012). Astrophysical explosions: from solar flares to cosmic gamma-ray bursts. Phil. Trans. R. Soc. A 370, 774799.Google Scholar