Hostname: page-component-7c8c6479df-24hb2 Total loading time: 0 Render date: 2024-03-28T08:39:56.585Z Has data issue: false hasContentIssue false

An explicit André–Oort type result for $\mathbb{P}^1(\mathbb{C}) \times \mathbb{G}_m(\mathbb{C})$

Published online by Cambridge University Press:  30 April 2015

ROLAND PAULIN*
Affiliation:
Department of Mathematics, University of Salzburg, Hellbrunnerstr. 34/I, 5020 Salzburg, Austria. e-mail: paulinroland@gmail.com

Abstract

Using class field theory we prove an explicit result of André–Oort type for $\mathbb{P}^1(\mathbb{C}) \times \mathbb{G}_m(\mathbb{C})$. In this variation the special points of $\mathbb{P}^1(\mathbb{C})$ are the singular moduli, while the special points of $\mathbb{G}_m(\mathbb{C})$ are defined to be the roots of unity.

Type
Research Article
Copyright
Copyright © Cambridge Philosophical Society 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] André, Y. Finitude des couples d'invariants modulaires singuliers sur une courbe algébrique plane non modulaire. J. Reine Angew. Math. 505 (1998), 203208.Google Scholar
[2] Bilu, Y. and Parent, P. bounds for integral j -invariants and cartan structures on elliptic curves. 2008. Preprint, arxiv:0807.2350 [math.CA].Google Scholar
[3] Bilu, Y., Masser, D. and Zannier, U. An effective “theorem of André” for CM-points on a plane curve. Math. Proc. Camb. Phil. Soc. 154 (1) (2013), 145152.Google Scholar
[4] Bombieri, E. and Gubler, W. Heights in Diophantine Geometry. New Mathematical Monographs, vol. 4 (Cambridge University Press, Cambridge, 2006).Google Scholar
[5] Bugeaud, Y. Approximation by Algebraic Numbers. Cambridge Tracts in Mathematics, vol. 160 (Cambridge University Press, Cambridge, 2004).Google Scholar
[6] Cox, D. A. Primes of the Form x 2 + ny 2 . A Wiley-Interscience Publication (John Wiley & Sons Inc., New York, 1989). Fermat, class field theory and complex multiplication.Google Scholar
[7] Goldfeld, D. Gauss's class number problem for imaginary quadratic fields. Bull. Amer. Math. Soc. (N.S.) 13 (1) (1985), 2337.Google Scholar
[8] Kühne, L. An effective result of André–Oort type. Ann. of Math. (2). 176 (1) (2012), 651671.Google Scholar
[9] Lang, S. Elliptic functions. Graduate Texts in Mathematics. vol. 112 (Springer-Verlag, New York, second edition, 1987). With an appendix by J. Tate.Google Scholar
[10] Lang, S. Algebra. Graduate Texts in Mathematics. vol. 211 (Springer-Verlag, New York, third edition, 2002).Google Scholar
[11] Neukirch, J. Algebraic Number Theory. Grundlehren der Mathematischen Wissenschaften, vol. 322 (Springer-Verlag, Berlin, 1999). Translated from the 1992 German original and with a note by Norbert Schappacher and a foreword by G. Harder.Google Scholar
[12] Pila, J. O-minimality and the André–Oort conjecture for $\mathbb{C}^n$ . Ann. of Math. (2). 173 (3) (2011), 17791840.Google Scholar
[13] Robin, G. Estimation de la fonction de Tchebychef θ sur le k-ième nombre premier et grandes valeurs de la fonction ω(n) nombre de diviseurs premiers de n. Acta Arith. 42 (4) (1983), 367389.Google Scholar
[14] Barkley Rosser, J. and Schoenfeld, L. Approximate formula for some functions of prime numbers. Illinois J. Math. 6 (1962), 6494.Google Scholar
[15] Wüstholz, G. A note on the conjectures of André–Oort and Pink. Bull. Ins. Math., Acad. Sinica (New Series). 9 (4) (2014), 735779. http://w3.math.sinica.edu.tw/bulletin_ns/20144/2014410.pdf.Google Scholar