Hostname: page-component-8448b6f56d-c4f8m Total loading time: 0 Render date: 2024-04-20T15:09:15.335Z Has data issue: false hasContentIssue false

CAUCHY–DAVENPORT TYPE THEOREMS FOR SEMIGROUPS

Published online by Cambridge University Press:  22 May 2015

Salvatore Tringali*
Affiliation:
Texas A&M University at Qatar, Education City, PO Box 23874 Doha, Qatar email salvatore.tringali@qatar.tamu.edu
Get access

Abstract

Let $\mathbb{A}=(A,+)$ be a (possibly non-commutative) semigroup. For $Z\subseteq A$, we define $Z^{\times }:=Z\cap \mathbb{A}^{\times }$, where $\mathbb{A}^{\times }$ is the set of the units of $\mathbb{A}$ and

$$\begin{eqnarray}{\it\gamma}(Z):=\sup _{z_{0}\in Z^{\times }}\inf _{z_{0}\neq z\in Z}\text{\text{ord}}(z-z_{0}).\end{eqnarray}$$
The paper investigates some properties of ${\it\gamma}(\cdot )$ and shows the following extension of the Cauchy–Davenport theorem: if $\mathbb{A}$ is cancellative and $X,Y\subseteq A$, then
$$\begin{eqnarray}|X+Y|\geqslant \min ({\it\gamma}(X+Y),|X|+|Y|-1).\end{eqnarray}$$
This implies a generalization of Kemperman’s inequality for torsion-free groups and strengthens another extension of the Cauchy–Davenport theorem, where $\mathbb{A}$ is a group and ${\it\gamma}(X+Y)$ in the above is replaced by the infimum of $|S|$ as $S$ ranges over the non-trivial subgroups of $\mathbb{A}$ (Hamidoune–Károlyi theorem).

Type
Research Article
Copyright
Copyright © University College London 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Cauchy, A. L., Recherches sur les nombres. J. École Polytech. 9 1813, 99116.Google Scholar
Cilleruelo, J., Hamidoune, Y. O. and Serra, O., Addition theorems in acyclic semigroups. In Additive Number Theory, Springer (2010), 99104.CrossRefGoogle Scholar
Davenport, H., A historical note. J. Lond. Math. Soc. (2) 22 1947, 100101.CrossRefGoogle Scholar
Geroldinger, A. and Schmid, W. A., The system of sets of lengths in Krull monoids under set addition. Preprint, 2015, arXiv:1407.1967v2.CrossRefGoogle Scholar
Hamidoune, Y. O., The isoperimetric method. In Combinatorial Number Theory and Additive Group Theory (eds Geroldinger, A. and Ruzsa, I. Z.), Birkhäuser (2009), 241252.CrossRefGoogle Scholar
Howie, J. M., Fundamentals of Semigroup Theory, Clarendon Press (1995).CrossRefGoogle Scholar
Károlyi, G., The Cauchy–Davenport theorem in group extensions. Enseign. Math. 51 2005, 239254.Google Scholar
Kemperman, J. H. B., On complexes in a semigroup. Indag. Math. (N.S.) 18 1956, 247254.CrossRefGoogle Scholar
Mal’cev, A. I., On the immersion of an algebraic ring into a field. Math. Ann. 113(1) 1937, 686691.CrossRefGoogle Scholar
Olson, J. E., On the sum of two sets in a group. J. Number Theory 18 1984, 110120.CrossRefGoogle Scholar
Ruzsa, I. Z., Sumsets and structure. In Combinatorial Number Theory and Additive Group Theory (eds Geroldinger, A. and Ruzsa, I. Z.), Birkhäuser (2009), 87210.Google Scholar
Tringali, S., A Cauchy–Davenport theorem for semigroups. Unif. Distrib. Theory 9(1) 2014, 2742.Google Scholar
Tringali, S., Small doubling in ordered semigroups. Semigroup Forum 90(1) 2015, 135148.CrossRefGoogle Scholar