Hostname: page-component-76fb5796d-5g6vh Total loading time: 0 Render date: 2024-04-26T04:13:54.469Z Has data issue: false hasContentIssue false

Zn nanodot patterning in borosilicate glasses by electron irradiation

Published online by Cambridge University Press:  21 May 2015

Mohammed Mohammed Sabri*
Affiliation:
Department of Materials Science and Engineering, University of Sheffield, Sheffield S1 3JD, United Kingdom
Russell J. Hand
Affiliation:
Department of Materials Science and Engineering, University of Sheffield, Sheffield S1 3JD, United Kingdom
Günter Möbus
Affiliation:
Department of Materials Science and Engineering, University of Sheffield, Sheffield S1 3JD, United Kingdom
*
a)Address all correspondence to this author. e-mail: m.mohammed-sabri@sheffield.ac.uk
Get access

Abstract

Metallic zinc nanoparticles are generated in two compositional ranges of borosilicate glasses upon 200 and 300 keV electron beam irradiation in a transmission electron microscope. Irradiation effects are studied either with a stationary electron beam as a time series or with spatially varying beams for line-scan patterning. The size of the zinc nanodots formed is inversely related to the distance from the center of the electron beam, and growth from 5 to 50 nm over time via ripening can be observed. Line-scan patterning via both thermal gun and field emission gun electron irradiation has been successfully achieved. Our findings also show the occurrence of self-organized particle ordering, such as formation of chains. Metal nanoparticles have a tendency to migrate toward the glass fragment center, unless high intensity radiation ablates the glass matrix, when Zn particles remain decorating the surface. High-resolution lattice imaging, scanning transmission electron microscopy, and electron energy loss spectroscopy are used to confirm particle identity.

Type
Articles
Copyright
Copyright © Materials Research Society 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Jiang, N.: Damage mechanism in electron microscopy of insulating materials. J. Phys. D: Appl. Phys. 46, 305502 (2013).CrossRefGoogle Scholar
Weber, W.J., Ewing, R.C., Angell, C.A., Arnold, G.W., Cormack, A.N., Delaye, J.M., Griscom, D.L., Hobbs, L.W., Navrotsky, A., Price, D.L., Stoneham, A.M., and Weinberg, M.C.: Radiation effects in glasses used for immobilization of high-level waste and plutonium disposition. J. Mater. Res. 12, 1948 (1997).CrossRefGoogle Scholar
Mayr, S.G., Ashkenazy, Y., Albe, K., and Averback, R.S.: Mechanisms of radiation-induced viscous flow: Role of point defects. Phys. Rev. Lett. 90, 055505 (2003).CrossRefGoogle ScholarPubMed
Möbus, G., Yang, G., Saghi, Z., Xu, X., Hand, R.J., Pankov, A., and Ojovan, M.I.: Electron irradiation and electron tomography studies of glasses and glass nanocomposites. Mater. Res. Soc. Symp. Proc. 1107, 239 (2008).CrossRefGoogle Scholar
Cassingham, N.J., Stennett, M.C., Bingham, P.A., Hyatt, N.C., and Aquilanti, G.: The structural role of Zn in nuclear waste glasses. Int. J. Appl. Glass Sci. 2(4), 343 (2011).CrossRefGoogle Scholar
Nakajima, A., Futatsugi, T., Nakao, H., Usuki, T., Horiguchi, N., and Yokoyama, N.: Microstructure and electrical properties of Sn nanocrystals in thin, thermally grown SiO2 layers formed via low energy ion implantation. J. Appl. Phys. 84, 1316 (1998).CrossRefGoogle Scholar
Borany, J.V., Grötzschel, R., Heinig, K-H., Markwitz, A., Matz, W., Schmidt, B., and Skorupa, W.: Multimodal impurity redistribution and nanocluster formation in Ge implanted silicon dioxide films. Appl. Phys. Lett. 71, 3215 (1997).CrossRefGoogle Scholar
Jiang, N., Qiu, J., and Spence, J.C.H.: Precipitation of Ge nanoparticles from GeO2 glasses in transmission electron microscope. Appl. Phys. Lett. 86, 143112 (2005).CrossRefGoogle Scholar
Ito, Y., Jain, H., and Williams, D.B.: Electron-beam induced growth of Cu nanoparticles in silica glass matrix. Appl. Phys. Lett. 75, 3793 (1999).CrossRefGoogle Scholar
Jiang, N., Qiu, J., and Silcox, J.: Precipitation of nanometer scale Zn crystalline particles in ZnO-B2O3-SiO2 glass during electron irradiation. Appl. Phys. Lett. 77, 3956 (2000).CrossRefGoogle Scholar
Jiang, N., Qiu, J., Ellison, A., and Silcox, J.: Fundamentals of high-energy electron-irradiation-induced modifications of silicate glasses. Phys. Rev. B 68, 064207 (2003).CrossRefGoogle Scholar
Kim, T.W.. Shin, J.W., Lee, J.Y., Jung, J.H., Lee, J.W., Choi, W.K., and Jin, S.: Electron-beam-induced formation of Zn nanocrystal islands in a SiO2 layer. Appl. Phys. Lett. 90, 051915 (2007).CrossRefGoogle Scholar
Guan, W., Ross, I.M., Bhatta, U.M., Ghatak, J., Peng, N., Inkson, B.J., and Möbus, G.: Nanopatterning by ion implantation through nanoporous alumina masks. Phys. Chem. Chem. Phys. 15, 4291 (2013).CrossRefGoogle ScholarPubMed
Liu, Y.C., Mu, R., Xu, H.Y., Lu, Y.M., Shen, D.Z., Fan, X.W., Henderson, D.O., and White, C.W.: Ion beam synthesis and optical properties of Zn and ZnO nanocrystals in SiO2 and CaF2 substrates. Mat. Res. Soc. Symp. Proc. 777, 1 (2003).CrossRefGoogle Scholar
Li, K. and Zhang, F-S.: A novel approach for preparing silver nanoparticles under electron beam irradiation. J. Nanopart. Res. 12, 1423 (2010).CrossRefGoogle Scholar
Kim, J.U., Cha, S.H., Shin, K., Jho, J.Y., and Lee, J.C.: Synthesis of gold nanoparticles from gold(I)-alkanethiolate complexes with supramolecular structures through electron beam irradiation in TEM. J. Am. Chem. Soc. 127, 9962 (2005).CrossRefGoogle ScholarPubMed
Guzman, S.S., Villarreal, N.E., Ferrer, D., Castro, A.T., Gao, X., Zhou, J.P., and Yacaman, M.J.: In situ formation of bismuth nanoparticles through electron-beam irradiation in a transmission electron microscope. Nanotechnology. 18, 335604 (2007).CrossRefGoogle Scholar
Ghatak, J., Guan, W., and Möbus, G.: In situ TEM observation of lithium nanoparticle growth and morphological cycling. Nanoscale 4, 1754 (2012).CrossRefGoogle ScholarPubMed
Penninkhof, J.J., Polman, A., Sweatlock, L.A., Maier, S.A., Atwater, H.A., Vredenberg, A.M., and Kooi, B.J.: Mega-electron-volt ion beam induced anisotropic plasmon resonance of silver nanocrystals in glass. Appl. Phys. Lett. 83, 4137 (2003).CrossRefGoogle Scholar
Ehrt, D.: Zinc and manganese borate glasses-phase separation, crystallisation, photoluminescence and structure. Phys. Chem. Glasses: Eur. J. Glass Sci. Technol., Part B. 54, 65 (2013).Google Scholar
Taylor, P. and Owen, D. G.: Liquid immiscibility in the system Na2O-ZnO-B2O3-SiO2 . J. Am. Ceram. Soc. 64, 360 (1981).CrossRefGoogle Scholar
Widder, K., Knupfer, M., Knauff, O., and Fink, J.: Plasmon behavior of Zn from electron-energy-loss spectroscopy. Phys. Rev. B 56, 10154 (1997).CrossRefGoogle Scholar
Ahn, C.C., Krivanek, O.L., Burgner, R.P., Disko, M.M., and Swann, P.R.: Electron energy loss spectroscopy Atlas (ASU HREM Facility and Gatan, Inc., 1983).Google Scholar
Hengehold, R.L., Almassy, R.J., and Pedrotti, F.L.: Electron energy-loss and ultraviolet-reflectivity spectra of crystalline ZnO. Phys. Rev. 1, 4784 (1970).CrossRefGoogle Scholar
Nishiyama, H., Miyamoto, I., Matsumoto, S-I., Saito, M., Fukumi, K., Kintaka, K., and Nishii, J.: Periodic precipitation of crystalline Ge nanoparticles in Ge–B–SiO2 thin glass films. Appl. Phys. Lett. 85, 3734 (2004).CrossRefGoogle Scholar
Mohr, C., Dubiel, M., and Hofmeister, H.: Formation of silver particles and periodic precipitate layers in silicate glass induced by thermally assisted hydrogen permeation. J. Phys. Cond. Mat. 13, 525 (2001).CrossRefGoogle Scholar
Gnanavel, T. and Möbus, G.: In situ synthesis of cobalt nanocrystal hierarchies in a transmission electron microscope. J. Nanopart. Res. 14, 1 (2012).CrossRefGoogle Scholar
Cazaux, J.: Some consideration on the electric-field induced in insulators by electron-bombardment. J. Appl. Phys. 59, 1418 (1986).CrossRefGoogle Scholar
Ajayan, P.M. and Marks, L.D.: Experimental evidence for quasimelting in small particles. Phys. Rev. Lett. 63, 279 (1989).CrossRefGoogle ScholarPubMed
Möbus, G., Ojovan, M., Cook, S., Tsai, J., and Yang, G.: Nano-scale quasi-melting of alkali-borosilicate glasses under electron irradiation. J. Nucl. Mater. 396, 264 (2010).CrossRefGoogle Scholar
Hobbs, L.W.: Electron-beam sensitivity in inorganic specimens. Ultramicroscopy 23, 339 (1987).CrossRefGoogle Scholar
Bradley, C.R. and Zaluzec, N.J.: Atomic sputtering in the analytical electron microscope. Ultramicroscopy 28, 335 (1989).CrossRefGoogle Scholar