Hostname: page-component-8448b6f56d-jr42d Total loading time: 0 Render date: 2024-04-24T12:34:13.252Z Has data issue: false hasContentIssue false

The interplay between structure, processing, and properties in organic photovoltaic devices: how to translate recent laboratory-scale developments to modules

Published online by Cambridge University Press:  20 May 2015

Caroline Grand
Affiliation:
School of Chemistry and Biochemistry, School of Materials Science and Engineering, Center for Organic Photonics and Electronics, Georgia Institute of Technology, Atlanta, Georgia, USA
John R. Reynolds*
Affiliation:
School of Chemistry and Biochemistry, School of Materials Science and Engineering, Center for Organic Photonics and Electronics, Georgia Institute of Technology, Atlanta, Georgia, USA
*
Address all correspondence John R. Reynolds atreynolds@chemistry.gatech.edu
Get access

Abstract

The design of π-conjugated molecules and polymers has driven the increase in efficiency of bulk heterojunction organic photovoltaic devices from <1% to over 12%. The pathways to generation of free charge carriers are still being uncovered. By focusing on blends of conjugated polymers with fullerenes, recent work has highlighted the impact of the design of donor–acceptor polymers on optoelectronic properties and phase-separated morphologies. This morphology of the active layer is largely controlled by processing conditions, such as use of processing additives. Developing a deep understanding of the impact of polymer chemistry and processing at the laboratory scale is key to translating the technology of organic photovoltaics from the research scale to large-area modules.

Type
Polymers/Soft Matter Prospective Articles
Copyright
Copyright © Materials Research Society 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Green, M.A., Emery, K., Hishikawa, Y., Warta, W., and Dunlop, E.D.: Solar cell efficiency tables (version 44). Prog. Photovolt: Res. Appl. 22, 701 (2014).CrossRefGoogle Scholar
2.Darling, S.B. and You, F.: The case for organic photovoltaics. RSC Adv. 3, 17633 (2013).CrossRefGoogle Scholar
3.Mazzio, K.A. and Luscombe, C.K.: The future of organic photovoltaics. Chem. Soc. Rev. 44, 78 (2015).CrossRefGoogle ScholarPubMed
4.Mulligan, C.J., Bilen, C., Zhou, X., Belcher, W.J., and Dastoor, P.C.: Levelised cost of electricity for organic photovoltaics. Sol. Energy Mater. Sol. Cells 133, 26 (2015).Google Scholar
5.US Energy Information Administration: Levelized Cost and Levelized Avoided Cost of New Generation Resources in the Annual Energy Outlook. 2014. http://www.eia.gov/.Google Scholar
6.Reinhard, P., Chirila, A., Blosch, P., Pianezzi, F., Nishiwaki, S., Buechelers, S., and Tiwari, A.N.: Review of progress toward 20% efficiency flexible CIGS solar cells and manufacturing issues of solar modules. IEEE J. Photovolt. 3, 572 (2013).CrossRefGoogle Scholar
7.Powalla, M., Witte, W., Jackson, P., Paetel, S., Lotter, E., Wuerz, R., Kessler, F., Tschamber, C., Hempel, W., Hariskos, D., Menner, R., Bauer, A., Spiering, S., Ahlswede, E., Friedlmeier, T.M., Blazquez-Sanchez, D., Klugius, I., and Wischmann, W.: CIGS cells and modules with high efficiency on glass and flexible substrates. IEEE J. Photovolt. 4, 440 (2014).CrossRefGoogle Scholar
8.Pethuraja, G.G., Welser, R.E., and Sood, A.K.: Roll-to-roll solution process method for fabricating CIGS solar cells and system for the same. U.S. Patent No. 8,865,506, October 21, (2014).Google Scholar
9.Amb, C.M., Craig, M.R., Koldemir, U., Subbiah, J., Choudhury, K.R., Gevorgyan, S.A., Jørgensen, M., Krebs, F.C., So, F., and Reynolds, J.R.: Aesthetically pleasing conjugated polymer:fullerene blends for blue-green solar cells via roll-to-roll processing. ACS Appl. Mater. Interfaces 4, 1847 (2012).Google Scholar
10.Krebs, F.C., Nielsen, T.D., Fyenbo, J., Wadstrom, M., and Pedersen, M.S.: Manufacture, integration and demonstration of polymer solar cells in a lamp for the “Lighting Africa” initiative. Energy Environ. Sci. 3, 512 (2010).CrossRefGoogle Scholar
11.Chueh, C.-C., Chien, S.-C., Yip, H.-L., Salinas, J.F., Li, C.-Z., Chen, K.-S., Chen, F.-C., Chen, W.-C., and Jen, A.K.Y.: Toward high-performance semi-transparent polymer solar cells: optimization of ultra-thin light absorbing layer and transparent cathode architecture. Adv. Energy Mater. 3, 417 (2013).CrossRefGoogle Scholar
12.Beiley, Z.M., Christoforo, M.G., Gratia, P., Bowring, A.R., Eberspacher, P., Margulis, G.Y., Cabanetos, C., Beaujuge, P.M., Salleo, A., and McGehee, M.D.: Semi-transparent polymer solar cells with excellent sub-bandgap transmission for third generation photovoltaics. Adv. Mater. 25, 7020 (2013).Google Scholar
13.Dou, L., Chang, W.-H., Gao, J., Chen, C.-C., You, J., and Yang, Y.: A selenium-substituted low-bandgap polymer with versatile photovoltaic applications. Adv. Mater. 25, 825 (2013).CrossRefGoogle ScholarPubMed
14.International Energy Agency: Technology Roadmap: Solar Photovoltaic Energy (2010).Google Scholar
15.Tang, C.W.: Two-layer organic photovoltaic cell. Appl. Phys. Lett. 48, 183 (1986).Google Scholar
16.Morel, D.L., Ghosh, A.K., Feng, T., Stogryn, E.L., Purwin, P.E., Shaw, R.F., and Fishman, C.: High-efficiency organic solar cells. Appl. Phys. Lett. 32, 495 (1978).Google Scholar
17.Ghosh, A.K. and Feng, T.: Merocyanine organic solar cells. J. Appl. Phys. 49, 5982 (1978).Google Scholar
18.Service, R.F.: Outlook brightens for plastic solar cells. Science 332, 293 (2011).Google Scholar
19.Heliatek consolidates its technology leadership by establishing a new world record for organic solar technology with a cell efficiency of 12%. http://www.heliatek.com/newscenter/latest_news/neuer-weltrekord-fur-organische-solarzellen-heliatek-behauptet-sich-mit-12-zelleffizienz-als-technologiefuhrer/?lang=enGoogle Scholar
20.Amb, C.M., Chen, S., Graham, K.R., Subbiah, J., Small, C.E., So, F., and Reynolds, J.R.: Dithienogermole as a fused electron donor in bulk heterojunction solar cells. J. Am. Chem. Soc. 133, 10062 (2011).Google Scholar
21.Small, C.E., Chen, S., Subbiah, J., Amb, C.M., Tsang, S.-W., Lai, T.-H., Reynolds, J.R., and So, F.: High-efficiency inverted dithienogermole-thienopyrrolodione-based polymer solar cells. Nat. Photonics 6, 115 (2012).Google Scholar
22.Coughlin, J.E., Henson, Z.B., Welch, G.C., and Bazan, G.C.: Design and synthesis of molecular donors for solution-processed high-efficiency organic solar cells. Acc. Chem. Res. 47, 257 (2013).Google Scholar
23.Kippelen, B. and Bredas, J.-L.: Organic photovoltaics. Energy Environ. Sci. 2, 251 (2009).CrossRefGoogle Scholar
24.Askat, E.J., Adam, P.W., John, R.T., Wai-Lun, C., Na, S., Raluca, G., Loren, G.K., Kenrick, J.W., Kevin, L., Peter, J.R., and Zhu, X.Y.: Hot charge-transfer excitons set the time limit for charge separation at donor/acceptor interfaces in organic photovoltaics. Nat. Mater. 12, 66 (2012).Google Scholar
25.Grancini, G., Maiuri, M., Fazzi, D., Petrozza, A., Egelhaaf, H.J., Brida, D., Cerullo, G., and Lanzani, G.: Hot exciton dissociation in polymer solar cells. Nat. Mater. 12, 29 (2013).CrossRefGoogle ScholarPubMed
26.Vithanage, D.A., Devižis, A., Abramavičius, V., Infahsaeng, Y., Abramavičius, D., MacKenzie, R.C.I., Keivanidis, P.E., Yartsev, A., Hertel, D., Nelson, J., Sundström, V., and Gulbinas, V.: Visualizing charge separation in bulk heterojunction organic solar cells. Nat. Commun. 4, 2334 (2013).CrossRefGoogle Scholar
27.Gélinas, S., Rao, A., Kumar, A., Smith, S.L., Chin, A.W., Clark, J., van der Poll, T.S., Bazan, G.C., and Friend, R.H.: Ultrafast long-range charge separation in organic semiconductor photovoltaic diodes. Science 343, 512 (2014).Google Scholar
28.Vandewal, K., Albrecht, S., Hoke, E.T., Graham, K.R., Widmer, J., Douglas, J.D., Schubert, M., Mateker, W.R., Bloking, J.T., Burkhard, G.F., Sellinger, A., Fréchet, J.M.J., Amassian, A., Riede, M.K., McGehee, M.D., Neher, D., and Salleo, A.: Efficient charge generation by relaxed charge-transfer states at organic interfaces. Nat. Mater. 13, 63 (2014).Google Scholar
29.Bredas, J.-L.: When electrons leave holes in organic solar cells. Science 343, 492 (2014).Google Scholar
30.Li, W. and You, W.: Donor-acceptor alternating copolymers. In Conjugated Polymers: A Practical Guide to Synthesis, edited by Müllen, K., Reynolds, J.R., and Masuda, T. (The Royal Society of Chemistry, 2014) 319342.Google Scholar
31.Mei, J. and Bao, Z.: Side chain engineering in solution-processible conjugated polymers for organic solar cells and field-effect transistors. Chem. Mater. 26, 604 (2014).Google Scholar
32.Parker, T.C., Patel, D.G., Moudgil, K., Barlow, S., Risko, C., Bredas, J.-L., Reynolds, J.R., and Marder, S.R.: Heteroannulated acceptors based on benzothiadiazole. Mater. Horiz. 2, 22 (2015).CrossRefGoogle Scholar
33.Robb, M.J., Ku, S.-Y., Brunetti, F.G., and Hawker, C.J.: A renaissance of color: new structures and building blocks for organic electronics. J. Polym. Sci., A: Polym. Chem. 51, 1263 (2013).CrossRefGoogle Scholar
34.Liu, Z., Zhang, G., Cai, Z., Chen, X., Luo, H., Li, Y., Wang, J., and Zhang, D.: New organic semiconductors with imide/amide-containing molecular systems. Adv. Mater. 26, 6965 (2014).Google Scholar
35.Guo, X., Facchetti, A., and Marks, T.J.: Imide- and amide-functionalized polymer semiconductors. Chem. Rev. 114, 8943 (2014).Google Scholar
36.Zhou, H., Yang, L., Stuart, A.C., Price, S.C., Liu, S., and You, W.: Development of fluorinated benzothiadiazole as a structural unit for a polymer solar cell of 7% efficiency. Angew. Chem. Int. Ed. 50, 2995 (2011).CrossRefGoogle ScholarPubMed
37.Son, H.J., Wang, W., Xu, T., Liang, Y., Wu, Y., Li, G., and Yu, L.: Synthesis of fluorinated polythienothiophene-co-benzodithiophenes and effect of fluorination on the photovoltaic properties. J. Am. Chem. Soc. 133, 1885 (2011).CrossRefGoogle ScholarPubMed
38.Scherf, U.: Conjugated ladder-type structures. In Handbook of Conjugated Polymers, edited by Skotheim, T.A., Elsenbaumer, R.L., and Reynolds, J.R. (CRC Press, Boca Raton, 1998), 363379.Google Scholar
39.Babel, A. and Jenekhe, S.A.: High electron mobility in ladder polymer field-effect transistors. J. Am. Chem. Soc. 125, 13656 (2003).Google Scholar
40.Steckler, T.T., Zhang, X., Hwang, J., Honeyager, R., Ohira, S., Zhang, X.-H., Grant, A., Ellinger, S., Odom, S.A., Sweat, D., Tanner, D.B., Rinzler, A.G., Barlow, S., Brédas, J.-L., Kippelen, B., Marder, S.R., and Reynolds:, J.R.A spray-processable, low bandgap, and ambipolar donor−acceptor conjugated polymer. J. Am. Chem. Soc. 131, 2824 (2009).Google Scholar
41.van Mullekom, H.A.M., Vekemans, J.A.J.M., Havinga, E.E., and Meijer, E.W.: Developments in the chemistry and band gap engineering of donor–acceptor substituted conjugated polymers. Mater. Sci. Eng. R: Rep. 32, 1 (2001).CrossRefGoogle Scholar
42.Burke, T.M. and McGehee, M.D.: How high local charge carrier mobility and an energy cascade in a three-phase bulk heterojunction enable >90% quantum efficiency. Adv. Mater. 26, 1923 (2014).Google Scholar
43.Sweetnam, S., Graham, K.R., Ngongang Ndjawa, G.O., Heumüller, T., Bartelt, J.A., Burke, T.M., Li, W., You, W., Amassian, A., and McGehee, M.D.: Characterization of the polymer energy landscape in polymer:fullerene bulk heterojunctions with pure and mixed phases. J. Am. Chem. Soc. 136, 14078 (2014).Google Scholar
44.Richter, L.J., DeLongchamp, D.M., Bokel, F.A., Engmann, S., Chou, K.W., Amassian, A., Schaible, E., and Hexemer, A.: In situ morphology studies of the mechanism for solution additive effects on the formation of bulk heterojunction films. Adv. Energy Mater. 5 (2015).Google Scholar
45.Abdelsamie, M., Zhao, K., Niazi, M.R., Chou, K.W., and Amassian, A.: In situ UV-visible absorption during spin-coating of organic semiconductors: a new probe for organic electronics and photovoltaics. J. Mater. Chem. C 2, 3373 (2014).Google Scholar
46.Rivnay, J., Mannsfeld, S.C.B., Miller, C.E., Salleo, A., and Toney, M.F.: Quantitative determination of organic semiconductor microstructure from the molecular to device scale. Chem. Rev. 112, 5488 (2012).CrossRefGoogle ScholarPubMed
47.Kline, R.J.: Dependence of regioregular poly(3-hexylthiophene) film morphology and field-effect mobility on molecular weight. Macromolecules 38, 3312 (2005).Google Scholar
48.Guilbert, A.A.Y., Frost, J.M., Agostinelli, T., Pires, E., Lilliu, S., Macdonald, J.E., and Nelson, J.: Influence of bridging atom and side chains on the structure and crystallinity of cyclopentadithiophene–benzothiadiazole polymers. Chem. Mater. 26, 1226 (2013).CrossRefGoogle Scholar
49.Park, J.K., Jo, J., Seo, J.H., Moon, J.S., Park, Y.D., Lee, K., Heeger, A.J., and Bazan, G.C.: End-capping effect of a narrow bandgap conjugated polymer on bulk heterojunction solar cells. Adv. Mater. 23, 2430 (2011).Google Scholar
50.Kouijzer, S., Michels, J.J., van den Berg, M., Gevaerts, V.S., Turbiez, M., Wienk, M.M., and Janssen, R.A.J.: Predicting morphologies of solution processed polymer:fullerene blends. J. Am. Chem. Soc. 135, 12057 (2013).Google Scholar
51.Beaujuge, P.M., Tsao, H.N., Hansen, M.R., Amb, C.M., Risko, C., Subbiah, J., Choudhury, K.R., Mavrinskiy, A., Pisula, W., Brédas, J.-L., So, F., Müllen, K., and Reynolds, J.R.: Synthetic principles directing charge transport in low-band-gap dithienosilole–benzothiadiazole copolymers. J. Am. Chem. Soc. 134, 8944 (2012).Google Scholar
52.Wang, S., Kappl, M., Liebewirth, I., Müller, M., Kirchhoff, K., Pisula, W., and Müllen, K.: Organic field-effect transistors based on highly ordered single polymer fibers. Adv. Mater. 24, 417 (2012).Google Scholar
53.Lei, T., Cao, Y., Zhou, X., Peng, Y., Bian, J., and Pei, J.: Systematic investigation of isoindigo-based polymeric field-effect transistors: design strategy and impact of polymer symmetry and backbone curvature. Chem. Mater. 24, 1762 (2012).Google Scholar
54.Graham, K.R., Cabanetos, C., Jahnke, J.P., Idso, M.N., El Labban, A., Ngongang Ndjawa, G.O., Heumueller, T., Vandewal, K., Salleo, A., Chmelka, B.F., Amassian, A., Beaujuge, P.M., and McGehee, M.D.: Importance of the donor : fullerene intermolecular arrangement for high-efficiency organic photovoltaics. J. Am. Chem. Soc. 136, 9608 (2014).Google Scholar
55.Tsao, H.N., Cho, D.M., Park, I., Hansen, M.R., Mavrinskiy, A., Yoon, D.Y., Graf, R., Pisula, W., Spiess, H.W., and Müllen, K.: Ultrahigh mobility in polymer field-effect transistors by design. J. Am. Chem. Soc. 133, 2605 (2011).Google Scholar
56.Shin, N., Richter, L.J., Herzing, A.A., Kline, R.J., and DeLongchamp, D.M.: Effect of processing additives on the solidification of blade-coated polymer/fullerene blend films via in-situ structure measurements. Adv. Energy Mater. 3, 938 (2013).Google Scholar
57.Perez, L.A., Chou, K.W., Love, J.A., van der Poll, T.S., Smilgies, D.-M., Nguyen, T.-Q., Kramer, E.J., Amassian, A., and Bazan, G.C.: Solvent additive effects on small molecule crystallization in bulk heterojunction solar cells probed during spin casting. Adv. Mater. 25, 6380 (2013).Google Scholar
58.Chou, K.W., Yan, B., Li, R., Li, E.Q., Zhao, K., Anjum, D.H., Alvarez, S., Gassaway, R., Biocca, A., Thoroddsen, S.T., Hexemer, A., and Amassian, A.: Spin-cast bulk heterojunction solar cells: a dynamical investigation. Adv. Mater. 25, 1923 (2013).Google Scholar
59.Peet, J., Kim, J.Y., Coates, N.E., Ma, W.L., Moses, D., Heeger, A.J., and Bazan, G.C.: Efficiency enhancement in low-bandgap polymer solar cells by processing with alkane dithiols. Nat. Mater. 6, 497 (2007).CrossRefGoogle ScholarPubMed
60.Peet, J., Cho, N.S., Lee, S.K., and Bazan, G.C.: Transition from solution to the solid state in polymer solar cells cast from mixed solvents. Macromolecules 41, 8655 (2008).CrossRefGoogle Scholar
61.Huang, Y., Kramer, E.J., Heeger, A.J., and Bazan, G.C.: Bulk heterojunction solar cells: morphology and performance relationships. Chem. Rev. 114, 7006 (2014).CrossRefGoogle ScholarPubMed
62.Yao, Y., Hou, J., Xu, Z., Li, G., and Yang, Y.: Effects of solvent mixtures on the nanoscale phase separation in polymer solar cells. Adv. Funct. Mater. 18, 1783 (2008).CrossRefGoogle Scholar
63.Rogers, J.T., Schmidt, K., Toney, M.F., Bazan, G.C., and Kramer, E.J.: Time-resolved structural evolution of additive-processed bulk heterojunction solar cells. J. Am. Chem. Soc. 134, 2884 (2012).Google Scholar
64.Schmidt, K., Tassone, C.J., Niskala, J.R., Yiu, A.T., Lee, O.P., Weiss, T.M., Wang, C., Fréchet, J.M.J., Beaujuge, P.M., and Toney, M.F.: A mechanistic understanding of processing additive-induced efficiency enhancement in bulk heterojunction organic solar cells. Adv. Mater. 26, 300 (2014).Google Scholar
65.Lou, S.J., Szarko, J.M., Xu, T., Yu, L., Marks, T.J., and Chen, L.X.: Effects of additives on the morphology of solution phase aggregates formed by active layer components of high-efficiency organic solar cells. J. Am. Chem. Soc. 133, 20661 (2011).CrossRefGoogle ScholarPubMed
66.Gao, J., Chen, W., Dou, L., Chen, C.-C., Chang, W.-H., Liu, Y., Li, G., and Yang, Y.: Elucidating double aggregation mechanisms in the morphology optimization of diketopyrrolopyrrole-based narrow bandgap polymer solar cells. Adv. Mater. 26, 3142 (2014).Google Scholar
67.Yan, H., Zhu, L., Li, D., Zhang, Y., Yi, Y., Yang, Y., Wei, Z., and Brédas, J.-L.: Rationalization of the selectivity in the optimization of processing conditions for high-performance polymer solar cells based on the polymer self-assembly ability. J. Phys. Chem. C 118, 29473 (2014).Google Scholar
68.Dang, M.T., Hirsch, L., and Wantz, G.: P3HT:PCBM, best seller in polymer photovoltaic research. Adv. Mater. 23, 3597 (2011).Google Scholar
69.Hendriks, K.H., Li, W., Heintges, G.H.L., van Pruissen, G.W.P., Wienk, M.M., and Janssen, R.A.J.: Homocoupling defects in diketopyrrolopyrrole-based copolymers and their effect on photovoltaic performance. J. Am. Chem. Soc. 136, 11128 (2014).Google Scholar
70.Zimmermann, E., Ehrenreich, P., Pfadler, T., Dorman, J.A., Weickert, J., and Schmidt-Mende, L.: Erroneous efficiency reports harm organic solar cell research. Nat. Photonics 8, 669 (2014).CrossRefGoogle Scholar
71.Luber, E.J. and Buriak, J.M.: Reporting performance in organic photovoltaic devices. ACS Nano 7, 4708 (2013).CrossRefGoogle ScholarPubMed
72.Krebs, F.C., Gevorgyan, S.A., and Alstrup, J.: A roll-to-roll process to flexible polymer solar cells: model studies, manufacture and operational stability studies. J. Mater. Chem. 19, 5442 (2009).Google Scholar
73.Machui, F., Lucera, L., Spyropoulos, G.D., Cordero, J., Ali, A.S., Kubis, P., Ameri, T., Voigt, M.M., and Brabec, C.J.: Large area slot-die coated organic solar cells on flexible substrates with non-halogenated solution formulations. Sol. Energy Mater. Sol. Cells 128, 441 (2014).Google Scholar
74.Teichler, A., Eckardt, R., Hoeppener, S., Friebe, C., Perelaer, J., Senes, A., Morana, M., Brabec, C.J., and Schubert, U.S.: Combinatorial screening of polymer:fullerene blends for organic solar cells by inkjet printing. Adv. Energy Mater. 1, 105 (2011).Google Scholar
75.Arias, A.C., MacKenzie, J.D., McCulloch, I., Rivnay, J., and Salleo, A.: Materials and applications for large area electronics: solution-based approaches. Chem. Rev. 110, 3 (2010).Google Scholar
76.Jin, H., Tao, C., Velusamy, M., Aljada, M., Zhang, Y., Hambsch, M., Burn, P.L., and Meredith, P.: Efficient, large area ITO-and-PEDOT-free organic solar cell sub-modules. Adv. Mater. 24, 2572 (2012).Google Scholar
77.Xiong, K., Hou, L., Wu, M., Huo, Y., Mo, W., Yuan, Y., Sun, S., Xu, W., and Wang, E.: From spin coating to doctor blading: a systematic study on the photovoltaic performance of an isoindigo-based polymer. Sol. Energy Mater. Sol. Cells 132, 252 (2015).Google Scholar
78.Giri, G., Verploegen, E., Mannsfeld, S.C.B., Atahan-Evrenk, S., Kim, D.H., Lee, S.Y., Becerril, H.A., Aspuru-Guzik, A., Toney, M.F., and Bao, Z.: Tuning charge transport in solution-sheared organic semiconductors using lattice strain. Nature 480, 504 (2011).Google Scholar
79.Yao, Y., Dong, H., and Hu, W.: Ordering of conjugated polymer molecules: recent advances and perspectives. Polym. Chem. 4, 5197 (2013).Google Scholar
80.Lim, S.-L., Chen, E.-C., Chen, C.-Y., Ong, K.-H., Chen, Z.-K., and Meng, H.-F.: High performance organic photovoltaic cells with blade-coated active layers. Sol. Energy Mater. Sol. Cells 107, 292 (2012).Google Scholar
81.Søndergaard, R., Manceau, M., Jørgensen, M., and Krebs, F.C.: New low-bandgap materials with good stabilities and efficiencies comparable to P3HT in R2R-coated solar cells. Adv. Energ. Mater. 2, 415 (2012).Google Scholar
82.Abdellah, A., Virdi, K.S., Meier, R., Döblinger, M., Müller-Buschbaum, P., Scheu, C., Lugli, P., and Scarpa, G.: Successive spray deposition of P3HT/PCBM organic photoactive layers: material composition and device characteristics. Adv. Funct. Mater. 22, 4078 (2012).Google Scholar
83.Patel, D.G., Graham, K.R., and Reynolds, J.R.: A Diels-Alder crosslinkable host polymer for improved PLED performance: the impact on solution processed doped device and multilayer device performance. J. Mater. Chem. 22, 3004 (2012).Google Scholar
84.Li, N., Kubis, P., Forberich, K., Ameri, T., Krebs, F.C., and Brabec, C.J.: Towards large-scale production of solution-processed organic tandem modules based on ternary composites: design of the intermediate layer, device optimization and laser based module processing. Sol. Energy Mater. Sol. Cells 120, 701 (2014).Google Scholar
85.Andersen, T.R., Dam, H.F., Hosel, M., Helgesen, M., Carle, J.E., Larsen-Olsen, T.T., Gevorgyan, S.A., Andreasen, J.W., Adams, J., Li, N., Machui, F., Spyropoulos, G.D., Ameri, T., Lemaitre, N., Legros, M., Scheel, A., Gaiser, D., Kreul, K., Berny, S., Lozman, O.R., Nordman, S., Valimaki, M., Vilkman, M., Sondergaard, R.R., Jorgensen, M., Brabec, C.J., and Krebs, F.C.: Scalable, ambient atmosphere roll-to-roll manufacture of encapsulated large area, flexible organic tandem solar cell modules. Energy Environ. Sci. 7, 2925 (2014).Google Scholar
86.Spyropoulos, G.D., Kubis, P., Li, N., Baran, D., Lucera, L., Salvador, M., Ameri, T., Voigt, M.M., Krebs, F.C., and Brabec, C.J.: Flexible organic tandem solar modules with 6% efficiency: combining roll-to-roll compatible processing with high geometric fill factors. Energy Environ. Sci. 7, 3284 (2014).Google Scholar
87.Lin, Y. and Zhan, X.: Non-fullerene acceptors for organic photovoltaics: an emerging horizon. Mater. Horiz. 1, 470 (2014).Google Scholar
88.Pho, T.V., Toma, F.M., Tremolet de Villers, B.J., Wang, S., Treat, N.D., Eisenmenger, N.D., Su, G.M., Coffin, R.C., Douglas, J.D., Fréchet, J.M.J., Bazan, G.C., Wudl, F., and Chabinyc, M.L.: Decacyclene triimides: paving the road to universal non-fullerene acceptors for organic photovoltaics. Adv. Energy Mater. 4, (2014).Google Scholar
89.Liu, T. and Troisi, A.: What makes fullerene acceptors special as electron acceptors in organic solar cells and how to replace them. Adv. Mater 25, 1038 (2013).CrossRefGoogle Scholar
90.Li, H., Earmme, T., Ren, G., Saeki, A., Yoshikawa, S., Murari, N.M., Subramaniyan, S., Crane, M.J., Seki, S., and Jenekhe, S.A.: Beyond fullerenes: design of nonfullerene acceptors for efficient organic photovoltaics. J. Am. Chem. Soc. 136, 14589 (2014).Google Scholar
91.Bloking, J.T., Giovenzana, T., Higgs, A.T., Ponec, A.J., Hoke, E.T., Vandewal, K., Ko, S., Bao, Z., Sellinger, A., and McGehee, M.D.: Comparing the device physics and morphology of polymer solar cells employing fullerenes and non-fullerene acceptors. Adv. Energy Mater. 4, (2014).Google Scholar
92.Bakulin, A.A., Rao, A., Pavelyev, V.G., van Loosdrecht, P.H.M., Pshenichnikov, M.S., Niedzialek, D., Cornil, J., Beljonne, D., and Friend, R.H.: The role of driving energy and delocalized states for charge separation in organic semiconductors. Science 335, 1340 (2012).Google Scholar
93.Earmme, T., Hwang, Y.-J., Murari, N.M., Subramaniyan, S., and Jenekhe, S.A.: All-polymer solar cells with 3.3% efficiency based on naphthalene diimide-selenophene copolymer acceptor. J. Am. Chem. Soc. 135, 14960 (2013).Google Scholar
94.Mori, D., Benten, H., Ohkita, H., Ito, S., and Miyake, K.: Polymer/polymer blend solar cells improved by using high-molecular-weight fluorene-based copolymer as electron acceptor. ACS Appl. Mater. Interfaces 4, 3325 (2012).Google Scholar
95.Earmme, T., Hwang, Y.-J., Subramaniyan, S., and Jenekhe, S.A.: All-polymer bulk heterojuction solar cells with 4.8% efficiency achieved by solution processing from a co-solvent. Adv. Mater. 26, 6080 (2014).CrossRefGoogle ScholarPubMed
96.Zhou, E., Cong, J., Hashimoto, K., and Tajima, K.: Control of miscibility and aggregation via the material design and coating process for high-performance polymer blend solar cells. Adv. Mater. 25, 6991 (2013).CrossRefGoogle ScholarPubMed
97.Li, W., Roelofs, W.S.C., Turbiez, M., Wienk, M.M., and Janssen, R.A.J.: Polymer solar cells with diketopyrrolopyrrole conjugated polymers as the electron donor and electron acceptor. Adv. Mater. 26, 3304 (2014).Google Scholar
98.Pavlopoulou, E., Kim, C.S., Lee, S.S., Chen, Z., Facchetti, A., Toney, M.F., and Loo, Y.-L.: Tuning the morphology of all-polymer OPVs through altering polymer–solvent interactions. Chem. Mater. 26, 5020 (2014).Google Scholar
99.Robb, M.J., Ku, S.-Y., and Hawker, C.J.: 25th anniversary article: no assembly required: recent advances in fully conjugated block copolymers. Adv. Mater. 25, 5686 (2013).Google Scholar
100.Lucera, L., Kubis, P., Fecher, F. W., Bronnbauer, C., Turbiez, M., Forberich, K., Ameri, T., Egelhaaf, H.-J., and Brabec, C.J.: Guidelines for closing the efficiency gap between hero solar cells and roll-to-roll printed modules. Energy Technol. 3, 373 (2015).Google Scholar
101.Angmo, D., Sommeling, P.M., Gupta, R., Hösel, M., Gevorgyan, S.A., Kroon, J.M., Kulkarni, G.U., and Krebs, F.C.: Outdoor operational stability of indium-free flexible polymer solar modules over 1 year studied in India, Holland, and Denmark. Adv. Eng. Mater. 16, 976 (2014).Google Scholar
102.Sachs-Quintana, I.T., Heumüller, T., Mateker, W.R., Orozco, D.E., Cheacharoen, R., Sweetnam, S., Brabec, C.J., and McGehee, M.D.: Electron barrier formation at the organic-back contact interface is the first step in thermal degradation of polymer solar cells. Adv. Funct. Mater. 24, 3978 (2014).CrossRefGoogle Scholar
103.Vosgueritchian, M., Lipomi, D.J., and Bao, Z.: Highly conductive and transparent PEDOT:PSS films with a fluorosurfactant for stretchable and flexible transparent electrodes. Adv. Funct. Mater. 22, 421 (2012).Google Scholar
104.Puodziukynaite, E., Wang, H.-W., Lawrence, J., Wise, A.J., Russell, T.P., Barnes, M.D., and Emrick, T.: Azulene methacrylate polymers: synthesis, electronic properties, and solar cell fabrication. J. Am. Chem. Soc. 136, 11043 (2014).Google Scholar
105.Zhou, Y., Fuentes-Hernandez, C., Shim, J., Meyer, J., Giordano, A.J., Li, H., Winget, P., Papadopoulos, T., Cheun, H., Kim, J., Fenoll, M., Dindar, A., Haske, W., Najafabadi, E., Khan, T.M., Sojoudi, H., Barlow, S., Graham, S., Brédas, J.-L., Marder, S.R., Kahn, A., and Kippelen, B.: A Universal method to produce low–work function electrodes for organic electronics. Science 336, 327 (2012).CrossRefGoogle ScholarPubMed
106.Imec Demonstrates Organic Photovoltaics Modules Showing Excellent Optical Properties and High Efficiencies. http://www2.imec.be/be_en/press/imec-news/imec-organic-solar-modules-photovoltaics.html.Google Scholar