Hostname: page-component-8448b6f56d-jr42d Total loading time: 0 Render date: 2024-04-23T11:23:43.344Z Has data issue: false hasContentIssue false

Sedimentation of spheroidal bodies near walls in viscous fluids: glancing, reversing, tumbling and sliding

Published online by Cambridge University Press:  11 May 2015

William H. Mitchell
Affiliation:
Department of Mathematics, University of Wisconsin – Madison, 480 Lincoln Drive, Madison, WI 53706, USA
Saverio E. Spagnolie*
Affiliation:
Department of Mathematics, University of Wisconsin – Madison, 480 Lincoln Drive, Madison, WI 53706, USA
*
Email address for correspondence: spagnolie@math.wisc.edu

Abstract

The sedimentation of a rigid particle near a wall in a viscous fluid has been studied numerically by many authors, but analytical solutions have been derived only for special cases such as the motion of spherical particles. In this paper the method of images is used to derive simple ordinary differential equations describing the sedimentation of arbitrarily oriented prolate and oblate spheroids at zero Reynolds number near a vertical or inclined plane wall. The differential equations may be solved analytically in many situations, and full trajectories are predicted which compare favourably with complete numerical simulations. The simulations are performed using a novel double-layer boundary integral formulation, a method of stresslet images. The conditions under which the glancing and reversing trajectories, first observed by Russel et al. (J. Fluid Mech., vol. 83, 1977, pp. 273–287), occur are studied for bodies of arbitrary aspect ratio. Several additional trajectories are also described: a periodic tumbling trajectory for nearly spherical bodies, a linearly stable sliding trajectory which appears when the wall is slightly inclined, and three-dimensional glancing, reversing and wobbling.

Type
Papers
Copyright
© 2015 Cambridge University Press 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ainley, J., Durkin, S., Embid, R., Boindala, P. & Cortez, R. 2008 The method of images for regularized Stokeslets. J. Comput. Phys. 227, 46004616.CrossRefGoogle Scholar
Barta, E. & Liron, N. 1988 Slender body interactions for low Reynolds numbers – part I: body–wall interactions. SIAM J. Appl. Maths 48, 9921008.Google Scholar
Batchelor, G. K. 1970 Slender-body theory for particles of arbitrary cross-section in Stokes flow. J. Fluid Mech. 44 (03), 419440.Google Scholar
Batchelor, G. K. 2000 An Introduction to Fluid Dynamics. Cambridge University Press.Google Scholar
Blake, J. R. 1971 A note on the image system for a Stokeslet in a no-slip boundary. Math. Proc. Camb. 70, 303310.Google Scholar
Blake, J. R. & Chwang, A. T. 1974 Fundamental singularities of viscous flow. J. Engng Maths 8, 2329.Google Scholar
Blake, J. R., Tuck, E. O. & Wakeley, P. W. 2010 A note on the s-transform and slender body theory in Stokes flow. IMA J. Appl. Maths 75 (3), 343355; arXiv: http://imamat.oxfordjournals.org/content/75/3/343.full.pdf+html.Google Scholar
Bossis, G., Meunier, A. & Sherwood, J. D. 1991 Stokesian dynamics simulations of particle trajectories near a plane. Phys. Fluids 3, 18531858.Google Scholar
Brady, J. F. & Bossis, G. 1988 Stokesian dynamics. Annu. Rev. Fluid Mech. 20, 111157.Google Scholar
Brenner, H. 1961 The slow motion of a sphere through a viscous fluid towards a plane surface. Chem. Engng Sci. 16 (3,4), 242251.Google Scholar
Caro, C. 2012 The Mechanics of the Circulation. Cambridge University Press.Google Scholar
Chwang, A. T. & Wu, T. Y. 1975 Hydromechanics of low-Reynolds-number flow. Part 2. Singularity method for Stokes flows. J. Fluid Mech. 67, 787815.Google Scholar
Chwang, A. T. & Wu, T. Y. 1976 Hydromechanics of low-Reynolds-number flow. Part 4. Translation of spheroids. J. Fluid Mech. 75, 677689.Google Scholar
Cichocki, B., Jones, R. B., Kutteh, R. & Wajnryb, E. 2000 Friction and mobility for colloidal spheres in Stokes flow near a boundary: the multipole method and applications. J. Chem. Phys. 112 (5), 25482561.CrossRefGoogle Scholar
Cox, R. G. 1970 The motion of long slender bodies in a viscous fluid. Part 1. General theory. J. Fluid Mech. 44, 791810.Google Scholar
Durlofsky, L., Brady, J. F. & Bossis, G. 1987 Dynamic simulation of hydrodynamically interacting particles. J. Fluid Mech. 180, 2149.Google Scholar
Edwardes, D. 1892 Steady motion of a viscous liquid in which an ellipsoid is constrained to rotate about a principal axis. Q. J. Math. 26, 7078.Google Scholar
Faxén, H. 1922 Der Widerstand gegen die Bewegung einer starren Kugel in einer zähen Flüssigkeit, die zwischen zwei parallelen Ebenen Wänden eingeschlossen ist. Ann. Phys. 4 (68), 89119.Google Scholar
Faxén, H. 1924 Der Widerstand gegen die Bewegung einer starren Kugel in einer zähen Flüssigkeit, die zwischen zwei parallelen Ebenen Wänden eingeschlossen ist. Ark. Mat. Astron. Fys. 18 (29), 152.Google Scholar
Goldman, A. J., Cox, R. G. & Brenner, H. 1966 The slow motion of two identical arbitrarily oriented spheres through a viscous fluid. Chem. Engng Sci. 21, 11511170.Google Scholar
Goldman, A. J., Cox, R. G. & Brenner, H. 1967a Slow viscous motion of a sphere parallel to a plane wall – I. Motion through a quiescent fluid. Chem. Engng Sci. 22, 637651.Google Scholar
Goldman, A. J., Cox, R. G. & Brenner, H. 1967b Slow viscous motion of a sphere parallel to a plane wall – II. Couette flow. Chem. Engng Sci. 22, 653660.Google Scholar
Guazzelli, É. 2006 Sedimentation of small particles: how can such a simple problem be so difficult? C. R. Méc. 334, 539544.Google Scholar
Happel, J. & Brenner, H. 1983 Low Reynolds Number Hydrodynamics: With Special Applications to Particulate Media, vol. 1. Springer.Google Scholar
Hsu, R. & Ganatos, P. 1989 The motion of a rigid body in viscous fluid bounded by a plane wall. J. Fluid Mech. 207, 2972.CrossRefGoogle Scholar
Hsu, R. & Ganatos, P. 1994 Gravitational and zero-drag motion of a spheroid adjacent to an inclined plane at low Reynolds number. J. Fluid Mech. 268, 267292.CrossRefGoogle Scholar
Huang, P. Y., Hu, H. H. & Joseph, D. D. 1998 Direct simulation of the sedimentation of elliptic particles in Oldroyd-b fluids. J. Fluid Mech. 362, 297326.Google Scholar
Hunter, J. D. 2007 Matplotlib: a 2D graphics environment. Comput. Sci. Engng 9 (3), 9095.CrossRefGoogle Scholar
Jeffery, G. B. 1922 The motion of ellipsoidal particles immersed in a viscous fluid. Proc. R. Soc. Lond. A 102, 161179.Google Scholar
Johnson, R. E. 1980 An improved slender-body theory for Stokes flow. J. Fluid Mech. 99, 411431.Google Scholar
Jung, S., Spagnolie, S. E., Parikh, K., Shelley, M. & Tornberg, A.-K. 2006 Periodic sedimentation in a Stokesian fluid. Phys. Rev. E 74, 035302.Google Scholar
Katz, D. F., Blake, J. R. & Paveri-Fontana, S. L. 1975 On the movement of slender bodies near plane boundaries at low Reynolds number. J. Fluid Mech. 72, 529540.Google Scholar
Keh, H. J. & Anderson, J. L. 1985 Boundary effects on electrophoretic motion of colloidal spheres. J. Fluid Mech. 153, 417439.Google Scholar
Keh, H. J. & Wan, Y. W. 2008 Diffusiophoresis of a colloidal sphere in nonelectrolyte gradients perpendicular to two plane walls. Chem. Engng Sci. 63, 16121625.Google Scholar
Keller, J. B. & Rubinow, S. I. 1976 Slender-body theory for slow viscous flow. J. Fluid Mech. 75, 705714.Google Scholar
Kim, S. 1985 Sedimentation of two arbitrarily oriented spheroids in a viscous fluid. Intl J. Multiphase Flow 11, 699712.Google Scholar
Kim, S. 1986 Singularity solutions for ellipsoids in low-Reynolds-number flows: with applications to the calculation of hydrodynamic interactions in suspensions of ellipsoids. Intl J. Multiphase Flow 12, 469491.Google Scholar
Kim, S. & Karrila, S. J. 1991 Microhydrodynamics: Principles and Selected Applications. Butterworth-Heinemann.Google Scholar
Kuiken, H. K. 1996 H. A. Lorentz: sketches of his work on slow viscous flow and some other areas in fluid mechanics and the background against which it arose. J. Engng Maths 30, ii+1–18.Google Scholar
Kutteh, R. 2010 Rigid body dynamics approach to Stokesian dynamics simulations of nonspherical particles. J. Chem. Phys. 132, 174107.Google Scholar
Lamb, H. 1932 Hydrodynamics, 6th edn. Pergamon.Google Scholar
Li, L., Manikantan, H., Saintillan, D. & Spagnolie, S. E. 2013 The sedimentation of flexible filaments. J. Fluid Mech. 735, 705736.Google Scholar
Lighthill, J. 1976 Flagellar hydrodynamics. SIAM Rev. 18, 161230.Google Scholar
Oberbeck, A. 1876 Über stationäre Flüssigkeitsbewegungen mit Berücksichtigung der inneren Reibung. J. Reine Angew. Math. 81, 6280.Google Scholar
O’Neill, M. E. 1964 A slow motion of viscous liquid caused by a slowly moving solid sphere. Mathematika 11, 6774.Google Scholar
Power, H. & Miranda, G. 1987 Second kind integral equation formulation of Stokes flows past a particle of arbitrary shape. SIAM J. Appl. Maths 47, 689698.Google Scholar
Pozrikidis, C. 1992 Boundary Integral and Singularity Methods for Linearized Viscous Flow. Cambridge University Press.Google Scholar
Pozrikidis, C. 2007 Particle motion near and inside an interface. J. Fluid Mech. 575, 333357.Google Scholar
Ramachandran, P. & Varoquaux, G. 2011 Mayavi: 3D visualization of scientific data. Comput. Sci. Engng 13 (2), 4051.Google Scholar
Russel, W. B., Hinch, E. J., Leal, L. G. & Tieffenbruck, G. 1977 Rods falling near a vertical wall. J. Fluid Mech. 83, 273287.Google Scholar
Shapira, M. & Haber, S. 1988 Low Reynolds number motion of a droplet between two parallel plates. Intl J. Multiphase Flow 14, 483506.Google Scholar
Spagnolie, S. E. & Lauga, E. 2012 Hydrodynamics of self-propulsion near a boundary: predictions and accuracy of far-field approximations. J. Fluid Mech. 700, 105147.Google Scholar
Stakgold, I. & Holst, M. J. 2011 Green’s Functions and Boundary Value Problems, vol. 99. John Wiley & Sons.Google Scholar
Steenberg, B. & Johansson, B. 1958 Viscous properties of pulp suspension at high shear-rates. Svensk Papperstidning 61 (18), 696700.Google Scholar
Stimson, M. & Jeffery, G. B. 1926 The motion of two spheres in a viscous fluid. Proc. R. Soc. Lond. A 111 (757), 110116.Google Scholar
Stokes, G. 1851 On the effect of the internal friction of fluids on the motion of pendulums. Trans. Camb. Phil. Soc. 9, 8106.Google Scholar
Swaminathan, T. N., Mukundakrishnan, K. & Hu, H. H. 2006 Sedimentation of an ellipsoid inside an infinitely long tube at low and intermediate Reynolds numbers. J. Fluid Mech. 551, 357385.Google Scholar
Swan, J. W. & Brady, J. F. 2007 Simulation of hydrodynamically interacting particles near a no-slip boundary. Phys. Fluids 19, 113306.Google Scholar
Tillett, J. P. K. 1970 Axial and transverse Stokes flow past slender axisymmetric bodies. J. Fluid Mech. 44, 401417.Google Scholar
Wakiya, S. 1959 Effect of a submerged object on a slow viscous flow (Report V). Spheroid at an arbitrary angle of attack. Res. Rep. Fac. Engng Niigata Univ. (Japan) 8, 1730.Google Scholar
Yang, S.-M. & Leal, L. G. 1983 Particle motion in Stokes flow near a plane fluid–fluid interface. Part 1. Slender body in a quiescent fluid. J. Fluid Mech. 136, 393421.Google Scholar

Mitchell supplementary movie

Sedimentation near walls in viscous fluids. Six trajectories are shown: three-dimensional glancing and three-dimensional reversing of both prolate and oblate bodies, and periodic tumbling with a lateral wobble of nearly spherical prolate and oblate bodies.

Download Mitchell supplementary movie(Video)
Video 5.7 MB