Hostname: page-component-8448b6f56d-m8qmq Total loading time: 0 Render date: 2024-04-19T20:38:12.080Z Has data issue: false hasContentIssue false

Microwave synthesis of a bimodal mixture of triangular plate and spheroidal silver nanoparticles

Published online by Cambridge University Press:  08 May 2015

Anneliese E. Laskowski
Affiliation:
Materials Science Center, University of Wisconsin Eau Claire, 105 Garfield Avenue, Eau Claire, Wisconsin 54701, USA
Daniel A. Decato
Affiliation:
Materials Science Center, University of Wisconsin Eau Claire, 105 Garfield Avenue, Eau Claire, Wisconsin 54701, USA
Mitchel S. Strandwitz
Affiliation:
Materials Science Center, University of Wisconsin Eau Claire, 105 Garfield Avenue, Eau Claire, Wisconsin 54701, USA
Jennifer A. Dahl*
Affiliation:
Materials Science Center, University of Wisconsin Eau Claire, 105 Garfield Avenue, Eau Claire, Wisconsin 54701, USA
*
Address all correspondence Jennifer A. Dahl atdahljenn@uwec.edu
Get access

Abstract

A bimodal mixture of silver nanoparticles consisting of spheres and triangular nanoplates was synthesized from silver nitrate (AgNO3) and polyvinylpyrrolidone with the aid of a microwave reactor system, reducing total reaction time from days to minutes; a specific shape-directing reagent was not used. It is known that freshly prepared solutions of AgNO3 contain a high population of Ag3+, while aged solutions contain fewer trimers. We propose that the product ratios of spheroidal to triangular particles are proportional to the relative population of trimers in solution prior to initiation of the microwave reaction.

Type
Research Letters
Copyright
Copyright © Materials Research Society 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Jung, W.K., Koo, H.C., Kim, K.W., Shin, S., Kim, S.H., and Park, Y.H.: Antibacterial activity and mechanism of action of the silver ion in Staphylococcus aureus and Escherichia coli. Appl. Environ. Microbiol. 74, 2171 (2008).Google Scholar
2.Liz-Marzan, L.M. and Lado-Tourino, I.: Reduction and stabilization of silver nanoparticles in ethanol by nonionic surfactants. Langmuir 12, 3585 (1996).Google Scholar
3.Liz-Marzan, L.M.: Nanometals: formation and color. Mater. Today 7, 26 (2004).CrossRefGoogle Scholar
4.Chang, S., Chen, K., Hua, Q., Ma, Y., and Huang, W.: Evidence for the growth mechanisms of silver nanocubes and nanowires. J. Phys. Chem. C 115, 7979 (2011).CrossRefGoogle Scholar
5.Wiley, B., Herricks, T., Sun, Y., and Xia, Y.: Polyol synthesis of silver nanoparticles: use of chloride and oxygen to promote the formation of single-crystal, truncated cubes and tetrahedrons. Nano Lett. 4, 1733 (2004).Google Scholar
6.Nandikonda, S. and Davis, E.W.: Parameters affecting the microwave-assisted polyol synthesis of silver nanorods. ISRN Nanotechnol. 2011, 104086 (2011).Google Scholar
7.Chen, D., Qiao, X., Qiu, X., Chen, J., and Jiang, R.: Convenient, rapid synthesis of silver nanocubes and nanowires via a microwave-assisted polyol method. Nanotechnology 21, 025607/1 (2010).Google Scholar
8.Gou, L., Chipara, M., and Zaleski, J.M.: Convenient, rapid synthesis of Ag nanowires. Chem. Mater. 19, 1755 (2007).Google Scholar
9.Cobley, C.M., Rycenga, M., Zhou, F., Li, Z.-Y., and Xia, Y.: Etching and growth: an intertwined pathway to silver nanocrystals with exotic shapes. Angew. Chem. Int. Ed. 48, 4824 (2009).CrossRefGoogle ScholarPubMed
10.Jin, R., Cao, Y., Mirkin, C.A., Kelly, K.L., Schatz, G.C., and Zheng, J.G.: Photoinduced conversion of silver nanospheres to nanoprisms. Science 294, 1901 (2001).Google Scholar
11.Xue, C., Métraux, G.S., Millstone, J.E., and Mirkin, C.A.: Mechanistic study of photomediated triangular silver nanoprism growth. J. Am. Chem. Soc. 130, 8337 (2008).Google Scholar
12.Pastoriza-Santos, I., Alvarez-Puebla, R.A., and Liz-Marzan, L.M.: Synthetic routes and plasmonic properties of noble metal nanoplates. Eur. J. Inorg. Chem. 2010, 4288 (2010).Google Scholar
13.Yin, B., Ma, H., Wang, S., and Chen, S.: Electrochemical synthesis of silver nanoparticles under protection of poly(N-vinylpyrrolidone). J. Phys. Chem. B 107, 8898 (2003).Google Scholar
14.Liang, H., Wang, W., Huang, Y., Zhang, S., Wei, H., and Xu, H.: Controlled synthesis of uniform silver nanospheres. J. Phys. Chem. C 114, 7427 (2010).CrossRefGoogle Scholar
15.Washio, I., Xiong, Y., Yin, Y., and Xia, Y.: Reduction by the end groups of poly(vinyl pyrrolidone): a new and versatile route to the kinetically controlled synthesis of Ag triangular nanoplates. Adv. Mater. 18, 1745 (2006).Google Scholar
16.Burda, C., Chen, X., Narayanan, R., and El-Sayed, M.A.: Chemistry and properties of nanocrystals of different shapes. Chem. Rev. 105, 1025 (2005).Google Scholar
17.Kamat, P.V.: Photophysical, photochemical and photocatalytic aspects of metal nanoparticles. J. Phys. Chem. B 106, 7729 (2002).Google Scholar
18.Lewis, L.N.: Chemical catalysis by colloids and clusters. Chem. Rev. 93, 2693 (1993).Google Scholar
19.Lidstrom, P., Tierney, J., Wathey, B., and Westman, J.: Microwave assisted organic synthesis: a review. Tetrahedron 57, 9225 (2001).Google Scholar
20.Rao, K.J., Vaidhyanathan, B., Ganguli, M., and Ramakrishnan, P.A.: Synthesis of inorganic solids using microwaves. Chem. Mater. 11, 882 (1999).Google Scholar
21.Dahal, N., Garcia, S., Zhou, J., and Humphrey, S.M.: Beneficial effects of microwave-assisted heating versus conventional heating in noble metal nanoparticle synthesis. ACS Nano 6, 9433 (2012).Google Scholar
22.Hu, B., Wang, S.-B., Wang, K., Zhang, M., and Yu, S.-H.: Microwave-assisted rapid facile‚ “Green” synthesis of uniform silver nanoparticles: self-assembly into multilayered films and their optical properties. J. Phys. Chem. C 112, 11169 (2008).CrossRefGoogle Scholar
23.Pastoriza-Santos, I. and Liz-Marzan, L.M.: Formation of PVP-protected metal nanoparticles in DMF. Langmuir 18, 2888 (2002).Google Scholar
24.Komarneni, S., Li, D., Newalkar, B., Katsuki, H., and Bhalla, A.S.: Microwave‚ polyol process for Pt and Ag nanoparticles. Langmuir 18, 5959 (2002).Google Scholar
25.Tsuji, M., Hashimoto, M., Nishizawa, Y., Kubokawa, M., and Tsuji, T.: Microwave-assisted synthesis of metallic nanostructures in solution. Chem. – Eur. J. 11, 440 (2005).Google Scholar
26.Tu, W. and Liu, H.: Continuous synthesis of colloidal metal nanoclusters by microwave irradiation. Chem. Mater. 12, 564 (2000).Google Scholar
27.Zhu, J., Palchik, O., Chen, S., and Gedanken, A.: Microwave assisted preparation of CdSe, PbSe, and Cu2-xSe nanoparticles. J. Phys. Chem. B 104, 7344 (2000).CrossRefGoogle Scholar
28.Xia, Y., Xiong, Y., Lim, B., and Skrabalak, S.E.: Shape-controlled synthesis of metal nanocrystals: simple chemistry meets complex physics? Angew. Chem. Int. Ed. 48, 60 (2009).CrossRefGoogle ScholarPubMed
29.Smith, D.K. and Korgel, B.A.: The importance of the CTAB surfactant on the colloidal seed-mediated synthesis of gold nanorods. Langmuir 24, 644 (2008).Google Scholar
30.Murphy, C.J., Thompson, L.B., Alkilany, A.M., Sisco, P.N., Boulos, S.P., Sivapalan, S.T., Yang, J.A., Chernak, D.J., and Huang, J.: The many faces of gold nanorods. J. Phys. Chem. Lett. 1, 2867 (2010).Google Scholar
31.Xiong, Y., Washio, I., Chen, J., Sadilek, M., and Xia, Y.: Trimeric clusters of silver in aqueous AgNO3 solutions and their role as nuclei in forming triangular nanoplates of silver. Angew. Chem. Int. Ed. 46, 4917 (2007).Google Scholar
32.Igathinathane, C., Pordesimo, L.O., Columbus, E.P., Batchelor, W.D., and Methuku, S.R.: Shape identification and particles size distribution from basic shape parameters using ImageJ. Comput. Electron. Agric. 63, 168 (2008).Google Scholar
33.He, R., Qian, X., Yin, J., and Zhu, Z.: Preparation of polychrome silver nanoparticles in different solvents. J. Mater. Chem. 12, 3783 (2002).CrossRefGoogle Scholar
34.Xiong, Y., Washio, I., Chen, J., Cai, H., Li, Z.-Y., and Xia, Y.: Poly(vinyl pyrrolidone): a dual functional reductant and stabilizer for the facile synthesis of noble metal nanoplates in aqueous solutions. Langmuir 22, 8563 (2006).CrossRefGoogle ScholarPubMed
35.Wolf, L.K.: Sweating the small stuff. Chem. Eng. News Arch. 90, 48 (2012).Google Scholar
36.An, J., Tang, B., Zheng, X., Zhou, J., Dong, F., Xu, S., Wang, Y., Zhao, B., and Xu, W.: Sculpturing effect of chloride ions in shape transformation from triangular to discal silver nanoplates. J. Phys. Chem. C 112, 15176 (2008).Google Scholar
37.Aherne, D., Ledwith, D.M., Gara, M., and Kelly, J.M.: Optical properties and growth aspects of silver nanoprisms produced by a highly reproducible and rapid synthesis at room temperature. Adv. Funct. Mater. 18, 2005 (2008).Google Scholar
38.Feng, X., Ma, H., Huang, S., Pan, W., Zhang, X., Tian, F., Gao, C., Cheng, Y., and Luo, J.: Aqueous-organic phase-transfer of highly stable gold, silver, and platinum nanoparticles and new route for fabrication of gold nanofilms at the oil/water interface and on solid supports. J. Phys. Chem. B 110, 12311 (2006).Google Scholar