Hostname: page-component-8448b6f56d-m8qmq Total loading time: 0 Render date: 2024-04-23T06:43:24.728Z Has data issue: false hasContentIssue false

Feeding mode and prey detectability half-lives in molecular gut-content analysis: an example with two predators of the Colorado potato beetle

Published online by Cambridge University Press:  05 April 2007

M.H. Greenstone*
Affiliation:
USDA-ARS, Insect Biocontrol Laboratory, BARC-West, Beltsville, Maryland 20705, USA
D.L. Rowley
Affiliation:
USDA-ARS, Insect Biocontrol Laboratory, BARC-West, Beltsville, Maryland 20705, USA
D.C. Weber
Affiliation:
USDA-ARS, Insect Biocontrol Laboratory, BARC-West, Beltsville, Maryland 20705, USA
M.E. Payton
Affiliation:
Department of Statistics, Oklahoma State University, Stillwater, Oklahoma 74078, USA
D.J. Hawthorne
Affiliation:
Department of Entomology, University of Maryland, College Park, Maryland 20742, USA
*
*Fax: 301 504 5104 E-mail: greenstm@ba.ars.usda.gov

Abstract

The time during which prey remains are detectable in the gut of a predator is an important consideration in the interpretation of molecular gut-content data, because predators with longer detectability times may appear on the basis of unweighted data to be disproportionately important agents of prey population suppression. The rate of decay in detectability, typically expressed as the half-life, depends on many variables; one that has not been explicitly examined is the manner in which the predator processes prey items. The influence of differences in feeding mode and digestive physiology on the half-life of DNA for a single prey species, the Colorado potato beetle Leptinotarsa decemlineata (Say), is examined in two predators that differ dramatically in these attributes: the pink ladybeetle, Coleomegilla maculata (DeGeer), which feeds by chewing and then ingesting the macerated material into the gut for digestion; and the spined soldier bug, Podisus maculiventris (Say), which physically and enzymatically processes the prey extra-orally before ingestion and further digestion in the gut. In order to standardize the amount of DNA consumed per predator, a single L. decemlineata egg was used as the prey item; all predators were third instars. The PCR assay yields estimated prey DNA half-lives, for animals maintained under field temperatures, of 7.0 h in C. maculata and 50.9 h in P. maculiventris. The difference in the prey DNA half-lives from these two predators underscores the need to determine detectabilities from assemblages of predators differing in feeding mode and digestive physiology, in order to weight positives properly, and hence determine the predators' relative impacts on prey population suppression.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Admassu, B., Juen, A. & Traugott, M. (2006) Earthworm primers for DNA-based gut content analysis and their cross-reactivity in a multi-species system. Soil Biology and chemistry 38, 13081315.CrossRefGoogle Scholar
Aldrich, J.R. & Cantelo, W.W. (1999) Suppression of Colorado potato beetle infestation by pheromone-mediated augmentation of the predatory spined soldier bug, Podisus maculiventris (Say) (Heteroptera: Pentatomidae). Agricultural and Forest Entomology 1, 209217.CrossRefGoogle Scholar
Anderson, J.F. (1970) Metabolic rates of spiders. Comparative Biochemistry and Physiology 33, 5172.CrossRefGoogle ScholarPubMed
BARC (2003) Beltsville Area Research Center, Station no. 2 North Farm – History and Information (http://www.ba.ars.usda.gov/weather/ba-weather-2.html).Google Scholar
Benton, A.H. & Crump, J. (1981) Observations on the spring and summer behavior of the 12-spotted ladybird beetle, Coleomegilla maculata (DeGeer) (Coleoptera: Coccinellidae). Journal of the New York Entomological Society 89, 102105.Google Scholar
Butt, J.H. (1951) Feeding habits and mechanism of the Mexican bean beetle. Memoirs of the Cornell University Agricultural Experiment Station 306, 132.Google Scholar
Byrne, A., Grafius, E., Bishop, B. & Pett, W. (2004) Susceptibility of Colorado potato beetle populations to imidacloprid and thiamethoxam. Arthropod Management Tests 29, L12.CrossRefGoogle Scholar
Calder, C.R., Harwood, J.D. & Symondson, W.O.C. (2005) Detection of scavenged material in the guts of predators using monoclonal antibodies: a significant source of error? Bulletin of Entomological Research 95, 5762.CrossRefGoogle ScholarPubMed
Chang, G.C. & Kareiva, P. (1999) The case for indigenous generalists in biological control. pp. 103115in Hawkins, B.A. & Cornell, H.V. (Eds) Theoretical approaches to biological control. Cambridge, Cambridge University Press.CrossRefGoogle Scholar
Chen, Y.K., Giles, K.L., Payton, M.E. & Greenstone, M.H. (2000) Identifying key cereal aphid predators by molecular gut analysis. Molecular Ecology 9, 18871898.CrossRefGoogle ScholarPubMed
Cohen, A.C. (1990) Feeding adaptations of some predaceous Hemiptera. Annals of the Entomological Society of America 83, 12151223.CrossRefGoogle Scholar
Cohen, A.C. (1998) Solid-to-liquid feeding: the inside(s) story of extra-oral digestion in predaceous Arthropoda. American Entomologist 14, 103117.CrossRefGoogle Scholar
Coll, M. & Guershon, M. (2002) Omnivory in terrestrial arthropods: mixing plant and prey diets. Annual Review of Entomology 47, 267297.CrossRefGoogle ScholarPubMed
De León, J.H., Fournier, V., Hagler, J.R. & Daane, K.M. (2006) Development of diagnostic markers for sharpshooters Homalodisca coagulata and Homalodisca liturata for use in predator gut content examinations. Entomologia Experimentalis et Applicata 119, 109119.Google Scholar
Dempster, J.P. (1960) Quantitative study of the predators on the eggs and larvae of the broom beetle, Phytodecta olivacea Forster, using the precipitin test. Journal of Animal Ecology 29, 149154.Google Scholar
Ehrlich, H.A. (1989) PCR technology: principles and applications for DNA amplification. New York, Stockton Press.Google Scholar
Ferro, D.N. (1994) Biological control of the Colorado potato beetle. pp. 357375in Zehnder, G.W., Powelson, M.L., Jansson, R.K. & Raman, K.V.A. (Eds) Advances in potato pest biology and management. St Paul, Minnesota, American Phytopathological Society Press.Google Scholar
Fichter, B.L. & Stephen, W.P. (1981) Time-related decay in prey antigens ingested by the predator Podisus maculiventris (Hemiptera, Pentatomidae) as detected by ELISA. Oecologia 51, 404407.CrossRefGoogle ScholarPubMed
Foltan, P., Sheppard, S.K., Konvicka, M. & Symondson, W.O.C. (2005) The significance of facultative scavenging in generalist predator nutrition: detecting decayed prey in the guts of predators using PCR. Molecular Ecology 14, 41474158.CrossRefGoogle ScholarPubMed
Fournier,, V., Hagler, J.R., Daane, K.M., de Leon, J.H., Groves, R.L., Costa, H.S. & Henneberry, T.J. (2006) Development and application of a glassy-winged and smoke-tree sharpshooter egg-specific predator gut-content ELISA. Biological Control 37, 108111.CrossRefGoogle Scholar
Greenstone, M.H. (1979) Spider feeding behaviour optimises dietary essential amino acid composition. Nature 181, 501503.CrossRefGoogle Scholar
Greenstone, M.H. (1996) Serological analysis of arthropod predation: past, present and future. pp. 265300in Symondson, W.O.C. & Liddell, J.E. (Eds) The ecology of agricultural pests – biochemical approaches. London, Chapman and Hall.Google Scholar
Greenstone, M.H. (1999) Spider predation: why and how we study it. Journal of Arachnology 27, 333342.Google Scholar
Greenstone, M.H. & Bennett, A.F. (1980) Foraging strategy and metabolic rate in spiders. Ecology 61, 12551259.CrossRefGoogle Scholar
Greenstone, M.H. & Hunt, J.H. (1993) Determination of prey antigen half-life in Polistes metricus using a monoclonal antibody-based immunodot assay. Entomologia Experimentalis et Applicata 68, 17.CrossRefGoogle Scholar
Greenstone, M.H. & Morgan, C.E. (1989) Predation on Heliothis zea (Lepidoptera: Noctuidae): an instar specific ELISA assay for stomach analysis. Annals of the Entomological Society of America 82, 4549.CrossRefGoogle Scholar
Greenstone, M.H., Rowley, D.L., Heimbach, U., Lundgren, J.G., Pfannenstiel, R.S. & Rehner, S.A. (2005) Barcoding generalist predators by polymerase chain reaction: carabids and spiders. Molecular Ecology 14, 32473266.CrossRefGoogle ScholarPubMed
Groden, E., Drummond, F.A., Casagrande, R.A. & Haynes, D.L. (1990) Coleomegilla maculata (Coleoptera: Coccinellidae): its predation upon the Colorado potato beetle (Coleoptera: Chrysomelidae) and its incidence in potatoes and surrounding crops. Journal of Economic Entomology 83, 13061315.CrossRefGoogle Scholar
Gurr, G.M. & Wratten, S.D. (Eds) (2000) Biological control: measures of success. Dordrecht, Kluwer.CrossRefGoogle Scholar
Hagler, J.R. & Naranjo, S.E. (1997) Measuring the sensitivity of an indirect predator gut content ELISA: detectability of prey remains in relation to predator species, temperature, time, and meal size. Biological Control 9, 112119.Google Scholar
Harwood, J.D., Phillips, S.W., Sunderland, K.D. & Symondson, W.O.C. (2001) Secondary predation: quantification of food chain errors in an aphid–spider–carabid system using monoclonal antibodies. Molecular Ecology 10, 20492057.CrossRefGoogle Scholar
Harwood, J.D., Sunderland, K.D. & Symondson, W.O.C. (2004) Prey selection by linyphiid spiders: molecular tracking of the effects of alternative prey on rates of aphid consumption in the field. Molecular Ecology 13, 35493560.CrossRefGoogle ScholarPubMed
Hazzard, R.V., Ferro, D.N., van Driesche, R.G. & Tuttle, A.F. (1991) Mortality of eggs of the Colorado potato beetle (Coleoptera: Chrysomelidae) from predation by Coleomegilla maculata (Coleoptera: Coccinellidae). Environmental Entomology 20, 841848.CrossRefGoogle Scholar
Heimpel, G.E. & Hough-Goldstein, J.A. (1992) A survey of arthropod predators of Leptinotarsa decemlineata (Say) in Delaware potato fields. Journal of Agricultural Entomology 9, 137142.Google Scholar
Hilbeck, A., Eckel, C. & Kennedy, G.G. (1997) Predation on Colorado potato beetle eggs by generalist predators in research and commercial potato plantings. Biological Control 8, 191196.CrossRefGoogle Scholar
Holopainen, J.K. & Helenius, J. (1992) Gut contents of ground beetles (Col., Carabidae), and activity of these and other epigeal predators during an outbreak of Rhopalosiphum padi (Hom., Aphididae). Acta Agriculturae Scandinavica 42, 5761.Google Scholar
Hoogendoorn, M. & Heimpel, G.E. (2001) PCR-based gut content analysis of insect predators: using ribosomal ITS-1 fragments from prey to estimate predation frequency. Molecular Ecology 10, 20592067.CrossRefGoogle ScholarPubMed
Hough-Goldstein, J. & McPherson, D. (1996) Comparison of Perillus bioculatus and Podisus maculiventris (Hemiptera: Pentatomidae) as potential control agents of the Colorado potato beetle (Coleoptera: Chrysomelidae). Journal of Economic Entomology 89, 11161123.CrossRefGoogle ScholarPubMed
Juen, A. & Traugott, M. (2005) Detecting predation and scavenging by DNA gut-content analysis: a case study using a soil insect predator–prey system. Oecologia 142, 344352.CrossRefGoogle ScholarPubMed
Juen, A. & Traugott, M.Revealing species-specific trophic links in soil food webs: molecular identification of scarab predators. Molecular Ecology in press.Google Scholar
Lister, A., Usher, M.B. & Block, W. (1987) Description and quantification of field attack rates by predatory mites: an example using an electrophoresis method with a species of Antarctic mite. Oecologia 72, 185191.Google ScholarPubMed
Ma, J., Li, D., Keller, M., Schmidt, O. & Feng, X. (2005) A DNA marker to identify predation of Plutella xylostella (Lep., Plutellidae) by Nabis kinbergii (Hem., Nabidae) and Lycosa sp. (Araneae, Lycosidae). Journal of Applied Entomology 129, 330335.CrossRefGoogle Scholar
Mack, T. & Smilowitz, Z. (1980) The development of a green peach aphid natural enemy sampling procedure. Environmental Entomology 9, 440445.CrossRefGoogle Scholar
Mota-Sanchez, D., Hollingworth, E., Grafius, E. & Moyer, D. (2006) Resistance and cross-resistance to neonicotinoid insecticides and spinosad in the Colorado potato beetle (Coleoptera: Chrysomelidae). Pest Management Science 62, 3037.CrossRefGoogle ScholarPubMed
Nakamura, M. & Nakamura, K. (1977) Population dynamics of the chestnut gall wasp, Dryocosmus kuriphilus Yamatsu (Hymenoptera: Cynipidae). V. Estimation of the effect of predation by spiders on the mortality of imaginal wasps based on the precipitin test. Oecologia 27, 97116.CrossRefGoogle Scholar
Payton, M.E., Greenstone, M.H. & Schenker, N. (2004) Overlapping confidence intervals or standard error intervals: what do they mean in terms of statistical significance? Journal of Insect Science 3, 16 (http://www.insectworld.org/3.34).CrossRefGoogle Scholar
Read, D.M., Sheppard, S.K., Bruford, M.W., Glen, D.M. & Symondson, W.O.C. (2006) Molecular detection of predation by soil microarthropods on nematodes. Molecular Ecology 16, 19631972.CrossRefGoogle Scholar
Riley, E., Clark, G.S.M. & Seeno, T.N. (2003) Catalog of the leaf beetles of America north of Mexico (Coleoptera: Megalopodidae, Orsodacnidae and Chrysomelidae, excluding Bruchinae). Coleopterists Society, Special Publication no. 1.Google Scholar
SAS Institute, Inc. (1999) SAS/STAT user's manual, version 8. 4th edn. SAS Institute.Google Scholar
Sheppard, S.K. & Harwood, J.D. (2005) Advances in molecular ecology: tracking trophic links through predator–prey food webs. Functional Ecology 19, 751762.CrossRefGoogle Scholar
Sheppard, S.K., Bell, J.R., Sunderland, K.D., Fenlon, J., Skirvin, D. & Symondson, W.O.C. (2005) Detection of secondary predation by PCR analyses of the gut contents of invertebrate generalist predators. Molecular Ecology 14, 44614468.Google ScholarPubMed
Simon, C., Frati, F., Beckenbach, A., Crespi, B., Liu, H. & Flook, P. (1994) Evolution, weighting, and phylogenetic utility of mitochondrial gene sequences and a compilation of conserved polymerase chain reaction primers. Annals of the Entomological Society of America 87, 651701.CrossRefGoogle Scholar
Sopp, P.I. & Sunderland, K.D. (1989) Some factors affecting the detection period of aphid remains in predators using ELISA. Entomologia Experimentalis et Applicata 51, 1120.CrossRefGoogle Scholar
Sopp, P.I., Sunderland, K.D., Fenlon, J.S. & Wratten, S.D. (1992) An improved quantitative method for estimating invertebrate predation in the field using an enzyme-linked immunosorbent assay (ELISA). Journal of Applied Ecology 79, 295302.CrossRefGoogle Scholar
Sunderland, K.D. (1975) The diet of some predatory arthropods in cereal crops. Journal of Applied Ecology 12, 507515.CrossRefGoogle Scholar
Sunderland, K.D. (1988) Quantitative methods for detecting invertebrate predation in the field. Annals of Applied Biology 112, 201224.CrossRefGoogle Scholar
Sunderland, K.D. (1999) Mechanisms underlying the effects of spiders on pest populations. Journal of Arachnology 27, 308316.Google Scholar
Sunderland, K.D., Crook, N.E., Stacey, D.L. & Fuller, B.J. (1987) A study of feeding by polyphagous predators on cereal aphids using ELISA and gut dissection. Journal of Applied Ecology 24, 907933.CrossRefGoogle Scholar
Symondson, W.O.C. (2002) Molecular identification of prey in predator diets. Molecular Ecology 11, 627641.CrossRefGoogle ScholarPubMed
Symondson, W.O.C. & Liddell, J. (1995) Decay rates for slug antigens within the carabid predator Pterostichus melanarius monitored with a monoclonal antibody. Entomologia Experimentalis et Applicata 75, 245250.Google Scholar
Symondson, W.O.C., Erickson, M.L. & Liddell, J. (1999) Development of a monoclonal antibody for the detection and quantification of predation on slugs within the Arion hortensis agg. (Mollusca: Pulmonata). Biological Control 16, 274282.CrossRefGoogle Scholar
Symondson, W.O.C., Sunderland, K.D. & Greenstone, M.H. (2002) Can generalist predators be effective biocontrol agents? Annual Review of Entomology 47, 561594.CrossRefGoogle ScholarPubMed
Tipping, P.W., Holko, C., Abdul-Baki, A.A. & Aldrich, J.R. (1999) Evaluating Edovum puttleri Grissell and Podisus maculiventris (Say) for augmentative biological control of Colorado potato beetle in tomatoes. Biological Control 16, 3542.CrossRefGoogle Scholar
Triltsch, H. (1999) Food remains in the guts of Coccinella septempunctata (Coleoptera: Coccinellidae) adults and larvae. European Journal of Entomology 96, 355364.Google Scholar
Wallace, S.K. (2004) Molecular gut analysis of carabids (Coleoptera: Carabidae) using aphid primers. Masters thesis, Montana State University, Bozeman, Montana, USA.Google Scholar
Weber, D.C. (2003) Colorado beetle: pest on the move. Pesticide Outlook 14, 256259.CrossRefGoogle Scholar
Weber, D.C., Rowley, D.L., Greenstone, M.H. & Athanas, M.M. (2006) Prey preference and host suitability of the predatory and parasitoid carabid beetle, Lebia grandis, for several species of Leptinotarsa beetles. 14 pp. Journal of Insect Science 6, 09 (http://www.insectworld.org/6.09).CrossRefGoogle ScholarPubMed
Zaidi, R.H., Jaal, Z., Hawkes, N.J., Hemingway, J. & Symondson, W.O.C. (1999) Can the detection of prey DNA amongst the gut contents of invertebrate predators provide a new technique for quantifying predation in the field? Molecular Ecology 8, 20812088.CrossRefGoogle Scholar
Zhao, J., Grafius, E. & Bishop, B. (2000) Inheritance and synergism of resistance to imidacloprid in the Colorado potato beetle (Coleoptera: Chrysomelidae). Journal of Economic Entomology 93, 15081514.CrossRefGoogle ScholarPubMed