Hostname: page-component-7c8c6479df-xxrs7 Total loading time: 0 Render date: 2024-03-28T06:04:20.274Z Has data issue: false hasContentIssue false

µ-XRF Analysis of Trace Elements in Lapis Lazuli-Forming Minerals for a Provenance Study

Published online by Cambridge University Press:  18 March 2015

Debora Angelici*
Affiliation:
Dipartimento di Scienze della Terra, Università di Torino, Via Valperga Caluso 35, 10125 Torino, Italy Dipartimento di Fisica, Università di Torino, Via Pietro Giuria 1, 10125 Torino, Italy
Alessandro Borghi
Affiliation:
Dipartimento di Scienze della Terra, Università di Torino, Via Valperga Caluso 35, 10125 Torino, Italy
Fabrizia Chiarelli
Affiliation:
Dipartimento di Fisica, Università di Torino, Via Pietro Giuria 1, 10125 Torino, Italy
Roberto Cossio
Affiliation:
Dipartimento di Scienze della Terra, Università di Torino, Via Valperga Caluso 35, 10125 Torino, Italy
Gianluca Gariani
Affiliation:
Dipartimento di Fisica, Università di Torino, Via Pietro Giuria 1, 10125 Torino, Italy
Alessandro Lo Giudice
Affiliation:
Dipartimento di Fisica, Università di Torino, Via Pietro Giuria 1, 10125 Torino, Italy INFN Sezione di Torino, Via Pietro Giuria 1, 10125 Torino, Italy
Alessandro Re
Affiliation:
Dipartimento di Fisica, Università di Torino, Via Pietro Giuria 1, 10125 Torino, Italy INFN Sezione di Torino, Via Pietro Giuria 1, 10125 Torino, Italy
Giovanni Pratesi
Affiliation:
Museo di Storia Naturale, Università di Firenze, Via G. La Pira 4, 50121 Firenze, Italy
Gloria Vaggelli
Affiliation:
CNR—Isitituto di Geoscienze e Georisorse, Via Valperga Caluso 35, 10125 Torino, Italy
*
*Corresponding author.debora.angelici@unito.it
Get access

Abstract

This paper presents new developments on the provenance study of lapis lazuli started by our group in 2008: during the years a multi-technique approach has been exploited to obtain minero-petrographic characterization and creation of a database considering only rock samples of known provenance. Since the final aim of the study is to develop a method to analyze archeological findings and artworks made with lapis lazuli in a completely non-invasive way, ion beam analysis techniques were employed to trace the provenance of the raw material used for the production of artifacts. Continuing this goal and focusing the analysis on determination of more significant minero-chemical markers for the provenance study of trace elements in different minerals, the method was extended with the use of micro X-ray fluorescence (µ-XRF), to test the potential of the technique for this application. The analyzes were focused on diopside and pyrite in lapis lazuli samples of known provenance (Afghanistan, Tajikistan, and Siberia). In addition, µ-XRF data were compared with micro proton-induced X-ray emission (µ-PIXE) results to verify the agreement between the two databases and to compare the analytical performance of both techniques for this application.

Type
Materials Applications
Copyright
© Microscopy Society of America 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abraitis, P.K., Pattrick, R.A.D. & Vaughan, D.J. (2004). Variations in the compositional, textural and electrical properties of natural pyrite: A review. Int J Miner Process 74, 4159.CrossRefGoogle Scholar
Aleksandrov, S.M. & Senin, V.G. (2006). Genesis and composition of lazurite in magnesian skarns. Geochem Int 10, 10531067.Google Scholar
Ballirano, P. & Maras, A. (2006). Mineralogical characterization of the blue pigment of Michelangelo’s fresco ‘The last judgment’. Am Miner 91, 9971005.CrossRefGoogle Scholar
Beck, L. (2014). Recent trends in IBA for cultural heritage. Nucl Instrum Met Phys Res B 332, 439444.CrossRefGoogle Scholar
Bollini, D., Cervellara, F., Egeni, G.P., Mazzoldi, P., Moschini, G., Rossi, P. & Rudello, V. (1993). The microbeam facility of the AN-2000 accelerator of the Laboratori Nazionali di Legnaro. Nucl Instrum Met Phys Res A 328, 173176.CrossRefGoogle Scholar
Bowles, J.F.W., Howie, R.A., Vaughan, J. & Zussman, L. (2011). Rock-Forming Mineral. Non-Silicates: Oxides, Hydroxides and Sulphi des , 2nd ed., vol. 5A. London: Geological Society of London.Google Scholar
Calusi, S. (2011). The external ion microbeam of the LABEC laboratory in Florence: Some applications to Cultural Heritage. Microsc Microanal 17, 661666.CrossRefGoogle ScholarPubMed
Calusi, S., Colombo, E., Giuntini, L., Lo Giudice, A., Manfredotti, C., Massi, M., Pratesi, G. & Vittone, E. (2008). The ionoluminescence apparatus at the LABEC external microbeam facility. Nucl Instrum Met Phys Res B 266, 23062310.CrossRefGoogle Scholar
Campbell, J.L., Boyd, N.I., Grassi, N., Bonnick, P. & Maxwell, J.A. (2010). The Guelph PIXE software package IV. Nucl Instrum Met Phys Res B 268, 33563363.CrossRefGoogle Scholar
Casanova, M. (2013). Le lapis-lazuli dans l’Orient Ancien: production et circulation du néolithique au II e millénaire AV. Paris: J.-C. Editions du Comité des travaux historiques et scientifiques.Google Scholar
Da Cunha, C. (1989). Le lapis lazuli: son Histoire, ses gisements, se imitations. Paris, France: Editions du Rocher. (in French).Google Scholar
Elam, W.T., Scruggs, B. & Nicolosi, J. (2010). Combined multiple-excitation FP method for micro-XRF analysis of difficult samples. Powder Diffr 25(2), 182186.CrossRefGoogle Scholar
Favaro, M., Guastoni, A., Marini, F., Bianchin, S. & Gambirasi, A. (2012). Characterization of lapis lazuli and corresponding purified pigments for a provenance study of ultramarine pigments used in works of art. Anal Bioanal Chem 402, 21952208.CrossRefGoogle ScholarPubMed
Hassan, I., Peterson, R.C. & Grundy, H.D. (1985). The structure of lazurite, ideally Na6Ca2(Al6Si6O24)S2, a member of the sodalite group. Acta Crystallographica C41, 827832.Google Scholar
Hermann, G. (1968). Lapis Lazuli: The early phases of its trade. Iraq 30(1), 2157.CrossRefGoogle Scholar
Hogart, D.D. & Griffin, W. (1976). New data on lazurite. Lithos 9, 3954.CrossRefGoogle Scholar
Hogart, D.D. & Griffin, W. (1978). Lapis lazuli from Baffin Island—a Precambrian meta-evaporite. Lithos 11, 3760.CrossRefGoogle Scholar
Holland, T.J.B. (1983). The experimental determination of activities in disordered and short-range ordered jadeitic pyroxenes. Contrib Mineral Petr 82, 214220.CrossRefGoogle Scholar
Janssens, K., Vittiglio, G., Deraedt, I., Aerts, A., Vekemans, B., Vincze, L., Wei, F., Deryck, I., Schalm, O., Adams, F., Rindby, A., Knöchel, A., Simionovici, A. & Snigirev, A. (2000). Use of microscopic XRF for non-destructive analysis in art and archaeology. X-Ray Spectrom 29, 7391.3.0.CO;2-M>CrossRefGoogle Scholar
Jenkins, R., Gould, R.W. & Gedcke, D. (1995). Quantitative X-Ray Spectrometry, 2nd ed. New York: Marcel Dekker.CrossRefGoogle Scholar
Lo Giudice, A., Re, A., Angelici, D., Calusi, S., Gelli, N., Giuntini, L., Massi, M. & Pratesi, M. (2012). Analy Bioanal Chem 404, 277281.CrossRefGoogle Scholar
Lo Giudice, A., Re, A., Calusi, S., Giuntini, L., Massi, M., Olivero, P., Pratesi, G., Albonico, M., Conz, E. (2009). Multitechnique characterization of lapis lazuli for provenance study. Anal Bioanal Chem 395, 22112217.CrossRefGoogle ScholarPubMed
Mantler, M. & Schreiner, M. (2000). X-ray fluorescence spectrometry in art and archaeology. X-Ray Spectrom 29, 317.3.0.CO;2-O>CrossRefGoogle Scholar
Morimoto, N. (1988). Nomenclature of pyroxenes. Am Mineral 73, 11231133.Google Scholar
Nibbi, A. (1981). Ancient Egypt and some Eastern Neighbours (chapter 2) Park Ridge: Noyes Publication. pp. 3355.Google Scholar
Pearce, N.J.G., Perkins, W.T., Westgate, J.A., Gorton, M.P., Jackson, S.E., Neal, C.R. & Chenery, S.P. (1997). A compilation of new and published major and trace element data for NIST SRM 610 and NIST SRM 612 glass reference materials. J Geostand Geoanal 21, 115144.CrossRefGoogle Scholar
Re, A., Angelici, D., Lo Giudice, A., Corsi, J., Allegretti, S., Biondi, A.F., Gariani, G., Calusi, S., Gelli, N., Giuntini, L., Massi, M., Taccetti, F., La Torre, L., Rigato, V. & Pratesi, G. (2015). Ion beam analysis for the provenance attribution of lapis lazuli used in glyptic art: The case of the “Collezione Medicea”. Nucl Instrum Met Phys Res B, doi:10.1016/j.nimb.2014.11.060.CrossRefGoogle Scholar
Re, A., Angelici, D., Lo Giudice, A., Maupas, E., Giuntini, L., Calusi, S., Gelli, N., Massi, M., Borghi, A., Gallo, L.M., Pratesi, G. & Mando’, P.A. (2013). New markers to identify the provenance of lapis lazuli: Trace elements in pyrite by means of micro-PIXE. Appl Phys A 111, 6974.CrossRefGoogle Scholar
Re, A., Lo Giudice, A., Angelici, D., Calusi, S., Giuntini, L., Massi, M. & Pratesi, G. (2011). Lapis lazuli provenance study by means of micro-PIXE. Nucl Instrum Met Phys Res B 269, 23732377.CrossRefGoogle Scholar
Rindby, A. & Janssens, K. (2002). Microbeam XRF. In Handbook of X-Ray Spectrometry, Van Grieken R.E. & Markowicz A.A. (Eds.), chapter 11, 631718. New York: Marcel Dekker.Google Scholar
Sokaras, D., Karydas, A.G., Oikonomou, A., Zacharias, N., Beltsios, K. & Kantarelou, V. (2009). Combined elemental analysis of ancient glass beads by means of ion beam, portable XRF, and EPMA techniques. Anal Bioanal Chem 395, 21992209.CrossRefGoogle ScholarPubMed
Tosi, M. (1974). The Lapis Lazuli Trade Across the Iranian Plateau in the 3rd Millennium BC. In Gururājamañjarikā, Tucci G. (Ed.), pp. 322. Napoli, Italy: Istituto Universitario Orientale.Google Scholar
Vaggelli, G. & Cossio, R. (2012). µ-XRF analysis of glasses: A non-destructive utility for cultural heritage applications. Analyst 137, 662667.CrossRefGoogle ScholarPubMed
Vaggelli, G., Lovera, V., Cossio, R. & Mirti, P. (2013). Islamic glass weights from Egypt. A systematic study by non-destructive µ-XRF technique. J Non-Crystal Solids 363, 96102.CrossRefGoogle Scholar
Wyart, J., Bariand, P. & Filippi, J. (1981). Lapis lazuli from Sar-i-Sang, Badakhshan, Afghanistan. Gems Gemol 17, 184190.CrossRefGoogle Scholar
Zöldföldi, J., Richter, S., kasztovszky, Z.S. & MIHÁLY, J. (2006). Where does lapis lazuli come from? Non-destructive provenance analysis by PGAA. In Proceeding of the 34th International Symposium on Archaeometry, 3–7 May 2004, Zaragoza, Spain, pp. 353–360.Google Scholar