Hostname: page-component-8448b6f56d-xtgtn Total loading time: 0 Render date: 2024-04-23T14:47:33.243Z Has data issue: false hasContentIssue false

A Model Ni–Al–Mo Superalloy Studied by Ultraviolet Pulsed-Laser-Assisted Local-Electrode Atom-Probe Tomography

Published online by Cambridge University Press:  17 March 2015

Yiyou Tu
Affiliation:
School of Materials Science and Engineering, Southeast University, Jiyin Road, Jiangning District, Nanjing, Jiangsu 211189, China Department of Materials Science and Engineering, Northwestern University, 2220 Campus Drive, Evanston, IL 60208-3108, USA
Elizaveta Y. Plotnikov
Affiliation:
Department of Materials Science and Engineering, Northwestern University, 2220 Campus Drive, Evanston, IL 60208-3108, USA
David N. Seidman*
Affiliation:
Department of Materials Science and Engineering, Northwestern University, 2220 Campus Drive, Evanston, IL 60208-3108, USA Northwestern University Center for Atom-Probe Tomography (NUCAPT), 2220 Campus Drive, Evanston, IL 60208-3108, USA
*
*Corresponding author.d-seidman@northwestern.edu
Get access

Abstract

This study investigates the effects of the charge-state ratio of evaporated ions on the accuracy of local-electrode atom-probe (LEAP) tomographic compositional and structural analyses, which employs a picosecond ultraviolet pulsed laser. Experimental results demonstrate that the charge-state ratio is a better indicator of the best atom-probe tomography (APT) experimental conditions compared with laser pulse energy. The thermal tails in the mass spectra decrease significantly, and the mass resolving power (mm) increases by 87.5 and 185.7% at full-width half-maximum and full-width tenth-maximum, respectively, as the laser pulse energy is increased from 5 to 30 pJ/pulse. The measured composition of this alloy depends on the charge-state ratio of the evaporated ions, and the most accurate composition is obtained when Ni2+/Ni+ is in the range of 0.3–20. The γ(f.c.c.)/γ'(L12) interface is quantitatively more diffuse when determined from the measured concentration profiles for higher laser pulse energies. Conclusions of the APT compositional and structural analyses utilizing the same suitable charge-state ratio are more comparable than those collected with the same laser pulse energy.

Type
Materials Applications
Copyright
© Microscopy Society of America 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Amouyal, Y. & Seidman, D.N. (2012). Atom-probe tomography of nickel-based superalloys with green or ultraviolet lasers: A comparative study. Microsc Microanal 18(5), 971981.Google Scholar
Bachhav, M., Danoix, R., Vurpillot, F., Hannoyer, B., Ogale, S. & Danoix, F. (2011). Evidence of lateral heat transfer during laser assisted atom probe tomography analysis of large band gap materials. Appl Phys Lett 99(8), 084101.Google Scholar
Blavette, D. & Bostel, A. (1984). Phase composition and long range order in γ′ phase of a nickel base single crystal superalloy CMSX2: An atom probe study. Acta Metall 32(5), 811816.Google Scholar
Brandon, D.G. (1966). The field evaporation of dilute alloys. Surf Sci 5(1), 137146.CrossRefGoogle Scholar
Brandon, D.G. (1968). Field evaporation. In Field ion microscopy, Hren, J.J. & Ranganathan, S. (Eds.), pp. 2852. NewYork, NY: Plenum Press.CrossRefGoogle Scholar
Bunton, J.H., Olson, J.D., Lenz, D.R. & Kelly, T.F. (2007). Advances in pulsed-laser atom probe: Instrument and specimen design for optimum performance. Microsc Microanal 13(06), 418427.Google Scholar
Bunton, J.H., Olson, J.D., Lenz, D.R., Larson, D.J. & Kelly, T.F. (2010). Optimized laser thermal pulsing of atom probe tomography: LEAP 4000X. Microsc Microanal 16(S2), 1011.Google Scholar
Capdevila, C., Miller, M.K., Russell, K.F., Chao, J. & González-Carrasco, J.L. (2008). Phase separation in PM 2000™ Fe-base ODS alloy: Experimental study at the atomic level. Mater Sci Eng A 490(1–2), 277288.CrossRefGoogle Scholar
Cerezo, A., Clifton, P.H., Galtrey, M.J., Humphreys, C.J., Kelly, T.F., Larson, D.J., Lozano-Perez, S., Marquis, E.A., Oliver, R.A., Sha, G., Thompson, K., Zandbergen, M. & Alvis, R.L. (2007 a). Atom probe tomography today. Mater Today 10(12), 3642.Google Scholar
Cerezo, A., Clifton, P., Gomberg, A. & Smith, G. (2007b). Aspects of the performance of a femtosecond laser-pulsed 3-dimensional atom probe. Ultramicroscopy 107(9), 720725.CrossRefGoogle ScholarPubMed
Cerezo, A., Smith, G.D.W. & Clifton, P.H. (2006). Measurement of temperature rises in the femtosecond laser pulsed three-dimensional atom probe. Appl Phys Lett 88(15), 154103.Google Scholar
Chbihi, A., Sauvage, X. & Blavette, D. (2012). Atomic scale investigation of Cr precipitation in copper. Acta Materialia 60(11), 45754585.CrossRefGoogle Scholar
Chen, Y.M., Ohkubo, T., Kodzuka, M., Morita, K. & Hono, K. (2009). Laser-assisted atom probe analysis of zirconia/spinel nanocomposite ceramics. Scr Mater 61(7), 693696.CrossRefGoogle Scholar
Clarke, A.J., Miller, M.K., Field, R.D., Coughlin, D.R., Gibbs, P.J., Clarke, K.D., Alexander, D.J., Powers, K.A., Papin, P.A. & Krauss, G. (2014). Atomic and nanoscale chemical and structural changes in quenched and tempered 4340 steel. Acta Materialia 77, 1727.CrossRefGoogle Scholar
Danoix, F., Bémont, E., Maugis, P. & Blavette, D. (2006). Atom probe tomography I. Early stages of precipitation of NbC and NbN in ferritic steels. Adv Eng Mater 8(12), 12021205.Google Scholar
Diez, R.P. & Alonso, J.A. (2005). A density-functional study on the formation of Mo22+. J Chem Phys 123(13), 134313.Google Scholar
Franzreb, K., Sobers, R.C. Jr, Lörincık, J. & Williamsb, P. (2004). Formation of doubly positively charged diatomic ions of Mo. J Chem P hys 120(17), 79837986.Google Scholar
Gault, B., Danoix, F., Hoummada, K., Mangelinck, D. & Leitner, H. (2012 a). Impact of directional walk on atom probe microanalysis. Ultramicroscopy 113, 182191.Google Scholar
Gault, B., La Fontaine, A., Moody, M.P., Ringer, S.P. & Marquis, E.A. (2010). Impact of laser pulsing on the reconstruction in an atom probe tomography. Ultramicroscopy 110(9), 12151222.Google Scholar
Gault, B., Moody, M.P., Cairney, J.M. & Ringer, S.P. (2012b). Atom Probe Microscopy. New York, NY: Springer.CrossRefGoogle Scholar
Heard, D.W., Boselli, J., Rioja, R., Marquis, E.A., Gauvin, R. & Brochu, M. (2013). Interfacial morphology development and solute trapping behavior during rapid solidification of an Al–Li–Cu alloy. Acta Mater 61(5), 15711580.Google Scholar
Hellman, O.C., Vandenbroucke, J.A., Rusing, J., Isheim, D. & Seidman, D.N. (2000). Analysis of three-dimensional atom-probe data by the proximity histogram. Microsc Microanal 6(5), 437444.Google Scholar
Kellogg, G.L. (1981). Determining the field emitter temperature during laser irradiation in the pulsed laser atom probe. J Appl Phys 52(8), 53205328.Google Scholar
Kelly, T.F. & Miller, M.K. (2007). Invited review article: Atom probe tomography. Rev Sci Instrum 78(3), 031101.Google Scholar
Kingham, D.R. (1982). The post-ionization of field evaporated ions – A theoretical explanation of multiple charge states. Surf Sci 116(2), 273301.Google Scholar
Kolli, R.P. & Meisenkothen, F. (2014). The influence of experimental parameters and specimen geometry on the mass spectra of copper during pulsed-laser atom-probe tomography. Microsc Microanal 20(06), 17151726.Google Scholar
Krakauer, B.W. & Seidman, D.N. (1992). Systematic procedures for atom-probe field-ion microscopy studies of grain boundary segregation. Rev Sci Instrum 63(9), 40714079.Google Scholar
Krug, M.E., Dunand, D.C. & Seidman, D.N. (2011). Effects of Li additions on precipitation-strengthened Al–Sc and Al–Sc–Yb alloys. Acta Mater 59(4), 17001715.CrossRefGoogle Scholar
Liu, H.F., Liu, H.M. & Tsong, T.T. (1986). Numerical calculation of the temperature distribution and evolution of the field-ion emitter under pulsed and continuous-wave laser irradiation. J Appl Phys 59(4), 13341340.Google Scholar
Mao, Z., Booth-Morrison, C., Sudbrack, C.K., Martin, G. & Seidman, D.N. (2012). Kinetic pathways for phase separation: An atomic-scale study in Ni–Al–Cr alloys. Acta Mater 60(4), 18711888.Google Scholar
Mao, Z., Sudbrack, C.K., Yoon, K.E., Martin, G. & Seidman, D.N. (2007). The mechanism of morphogenesis in a phase-separating concentrated multicomponent alloy. Nat Mater 6(3), 210216.Google Scholar
Marquis, E.A. & Gault, B. (2008). Determination of the tip temperature in laser assisted atom-probe tomography using charge state distributions. J Appl Phys 104(8), 084914.Google Scholar
Marquis, E.A. & Hyde, J.M. (2010). Applications of atom-probe tomography to the characterisation of solute behaviours. Mater Sci Eng R Rep 69(4), 3762.Google Scholar
Marquis, E.A., Yahya, N.A., Larson, D.J., Miller, M.K. & Todd, R.I. (2010). Probing the improbable: Imaging C atoms in alumina. Mater Today 13(10), 3436.CrossRefGoogle Scholar
Miller, M.K. & Miller, M.K. (2000). Atom Probe Tomography: Analysis at the Atomic Level. New York, NY: Kluwer Academic/Plenum Publishers.Google Scholar
Miller, M.K. & Russell, K.F. (2007). Performance of a local electrode atom probe. Surf Interface Anal 39(2–3), 262267.Google Scholar
Miller, M.K. & Smith, G.D.W. (1981). An atom probe study of the anomalous field evaporation of alloys containing silicon. J Vac Sci Technol 19(1), 5762.CrossRefGoogle Scholar
Moutanabbir, O., Isheim, D., Seidman, D.N., Kawamura, Y. & Itoh, K.M. (2011). Ultraviolet-laser atom-probe tomographic three-dimensional atom-by-atom mapping of isotopically modulated Si nanoscopic layers. Appl Phys Lett 98(1), 013111013111-3.Google Scholar
Mulholland, M.D. & Seidman, D.N. (2011 a). Nanoscale co-precipitation and mechanical properties of a high-strength low-carbon steel. Acta Mater 59(5), 18811897.Google Scholar
Mulholland, M.D. & Seidman, D.N. (2011 b). Voltage-pulsed and laser-pulsed atom probe tomography of a multiphase high-strength low-carbon steel. Microsc Microanal 17(6), 950962.Google Scholar
Müller, M., Smith, G., Gault, B. & Grovenor, C.M. (2012). Compositional nonuniformities in pulsed laser atom probe tomography analysis of compound semiconductors. J Appl Phys 111(6), 064908.CrossRefGoogle Scholar
Parratt, L.G. (1966). Probability and Experimental Errors in Science . New York: John Wiley.Google Scholar
Plotnikov, E.Y. (2015). Kinetic pathways for phase separation: An atomic scale study in Ni-Al alloys. PhD Thesis. Evanston, IL: Northwestern University.Google Scholar
Plotnikov, E.Y., Mao, Z., Noebe, R.D. & Seidman, D.N. (2014). Temporal evolution of the γ(fcc)/γ′(L12) interfacial width in binary Ni–Al alloys. Scr Mater 70, 5154.Google Scholar
Schreiber, D.K., Choi, Y.S., Liu, Y.Z., Chiaramonti, A.N., Seidman, D.N. & Petford-Long, A.K. (2011). Effects of elemental distributions on the behavior of MgO-based magnetic tunnel junctions. J Appl Phys 109(10), 103909.Google Scholar
Seidman, D.N. (2007). Three-dimensional atom-probe tomography: Advances and applications. Ann Rev Mater Res 37, 127158.Google Scholar
Seidman, D.N. & Stiller, K. (2009). An atom-probe tomography primer. MRS Bull 34(10), 717724.Google Scholar
Sha, G., Cerezo, A. & Smith, G.D.W. (2008). Field evaporation behavior during irradiation with picosecond laser pulses. Appl Phys Lett 92(4), 043503.CrossRefGoogle Scholar
Shariq, A., Mutas, S., Wedderhoff, K., Klein, C., Hortenbach, H., Teichert, S., Kücher, P. & Gerstl, S. (2009). Investigations of field-evaporated end forms in voltage-and laser-pulsed atom probe tomography. Ultramicroscopy 109(5), 472479.Google Scholar
Shimizu, Y., Kawamura, Y., Uematsu, M., Tomita, M., Kinno, T., Okada, N., Kato, M., Uchida, H., Takahashi, M., Ito, H., Ishikawa, H., Ohji, Y., Takamizawa, H., Nagai, Y. & Itoh, K.M. (2011). Depth and lateral resolution of laser-assisted atom probe microscopy of silicon revealed by isotopic heterostructures. J Appl Phys 109(3), 36102.Google Scholar
Sudbrack, C.K. (2004). Decomposition Behavior In Model Ni-Al-Cr-X Superalloys: Temporal Evolution and Compositional Pathways on a Nanoscale. PhD Thesis. Evanston, IL: Northwestern University.Google Scholar
Tsong, T. (1986). Observation of doubly charged diatomic cluster ions of a metal. J Chem Phys 85(1), 639640.Google Scholar
Tu, Y., Mao, Z. & Seidman, D.N. (2012). Phase-partitioning and site-substitution patterns of molybdenum in a model Ni-Al-Mo superalloy: An atom-probe tomographic and first-principles study. Appl Phys Lett 101(12), 121910121910-4.Google Scholar
Vella, A., Deconihout, B., Marrucci, L. & Santamato, E. (2007). Femtosecond field ion emission by surface optical rectification. Phys Rev Lett 99(4), 046103.Google Scholar
Vurpillot, F., Houard, J., Vella, A. & Deconihout, B. (2009). Thermal response of a field emitter subjected to ultra-fast laser illumination. J Phys D Appl Phys 42(12), 125502.Google Scholar
Wada, M. (1984). On the thermally activated field evaporation of surface atoms. Surf Sci 145(2), 451465.CrossRefGoogle Scholar
Worrall, G.M. & Smith, G.D.W. (1986). The quantitative-analysis of copper in iron based alloys. J Phys 47(C-2), 245250.Google Scholar
Yamaguchi, Y., Takahashi, J. & Kawakami, K. (2009). The study of quantitativeness in atom probe analysis of alloying elements in steel. Ultramicroscopy 109(5), 541544.CrossRefGoogle Scholar
Yao, L., Cairney, J., Zhu, C. & Ringer, S. (2011). Optimisation of specimen temperature and pulse fraction in atom probe microscopy experiments on a microalloyed steel. Ultramicroscopy 111(6), 648651.Google Scholar
Yoon, K.E., Seidman, D.N., Antoine, C. & Bauer, P. (2008). Atomic-scale chemical analyses of niobium oxide/niobium interfaces via atom-probe tomography. Appl Phys Lett 93(13), 132502.Google Scholar
Zheng, R.K., Moody, M.P., Gault, B., Liu, Z.W., Liu, H. & Ringer, S.P. (2009). On the understanding of the microscopic origin of the properties of diluted magnetic semiconductors by atom probe tomography. J Magn Magn Mater 321(8), 935943.Google Scholar
Zhou, Y., Booth-Morrison, C. & Seidman, D.N. (2008). On the field evaporation behavior of a model Ni-Al-Cr superalloy studied by picosecond pulsed-laser atom-probe tomography. Microsc Microanal 14(6), 571580.Google Scholar