Hostname: page-component-7c8c6479df-xxrs7 Total loading time: 0 Render date: 2024-03-29T15:44:33.051Z Has data issue: false hasContentIssue false

A local-global principle for small triangulated categories

Published online by Cambridge University Press:  02 March 2015

DAVE BENSON
Affiliation:
Institute of Mathematics, University of Aberdeen, King's College, Aberdeen AB24 3UE, Scotland. e-mail: mth192@abdn.ac.uk
SRIKANTH B. IYENGAR
Affiliation:
Department of Mathematics, University of Nebraska, Lincoln, NE 68588, U.S.A. e-mail: iyengar@math.utah.edu
HENNING KRAUSE
Affiliation:
Fakultät für Mathematik, Universität Bielefeld, 33501 Bielefeld, Germany. e-mail: hkrause@math.uni-bielefeld.de

Abstract

Local cohomology functors are constructed for the category of cohomological functors on an essentially small triangulated category ⊺ equipped with an action of a commutative noetherian ring. This is used to establish a local-global principle and to develop a notion of stratification, for ⊺ and the cohomological functors on it, analogous to such concepts for compactly generated triangulated categories.

Type
Research Article
Copyright
Copyright © Cambridge Philosophical Society 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Version from July 8, 2014.

References

REFERENCES

[1]Avramov, L. L. and Buchweitz, R.-O., Support varieties and cohomology over complete intersections. Invent. Math. 142 (2000), 285318.Google Scholar
[2]Balmer, P.Spectra, spectra, spectra – Tensor triangular spectra versus Zariski spectra of endomorphism rings. Algebr. Geom. Topol. 10 (2010), no. 3, 15211563.Google Scholar
[3]Benson, D. J. and Gnacadja, G. PH.Phantom maps and purity in modular representation theory. II. Algebr. Represent. Theory 4 (2001), no. 4, 395404.Google Scholar
[4]Benson, D. J., Iyengar, S. B., and Krause, H.Local cohomology and support for triangulated categories Ann. Sci. Norm. Sup. (4) 41 (2008), 575621.Google Scholar
[5]Benson, D., Iyengar, S. B. and Krause, H.Stratifying triangulated categories. J. Topol. 4 (2011), no. 3, 641666.Google Scholar
[6]Benson, D. J., Iyengar, S. B., and Krause, H.Stratifying modular representations of finite groups, Ann. of Math. 174 (2011), 16431684.Google Scholar
[7]Bergh, P. A. and Oppermann, S.Cohomological symmetry in triangulated categories. J. Algebra 347 (2011), 143152.Google Scholar
[8]Bourbaki, N.Éléments de mathématique. Fascicule XXVII. Algèbre commutative. Chapitre 1: Modules plats. Chapitre 2: Localisation, Actualités Scientifiques et Industrielles, No. 1290 (Herman, Paris, 1961).Google Scholar
[9]Carlson, J. F.The varieties and the cohomology ring of a module. J. Algebra 85 (1983), 104143.Google Scholar
[10]Dell'Ambrogio, I. and Stevenson, G.On the derived category of a graded commutative Noetherian ring. J. Algebra 373 (2013), 356376.Google Scholar
[11]Dwyer, W., Greenlees, J. P. C. and Iyengar, S.Finiteness in derived categories of local rings. Comment. Math. Helv. 81 (2006), no. 2, 383432.Google Scholar
[12]Gabriel, P. and Zisman, M.Calculus of Fractions and Homotopy Theory (Springer-Verlag, New York, Inc., New York, 1967).CrossRefGoogle Scholar
[13]Grothendieck, A. and Verdier, J. L.Préfaisceaux. In SGA 4, Théorie des Topos et Cohomologie Etale des Schémas, Tome 1. Théorie des Topos. Lect. Notes in Math. 269 (Springer, Heidelberg, 1972–1973), pp. 1184.CrossRefGoogle Scholar
[14]Hopkins, M. J.Global methods in homotopy theory. In Homotopy Theory (Durham, 1985), 73–96, London Math. Soc. Lecture Note Ser. 117 (Cambridge University Press, Cambridge, 1987).Google Scholar
[15]Hovey, M., Palmieri, J. H., and Strickland, N. P.Axiomatic stable homotopy theory. Mem. Amer. Math. Soc. 128 (1997), no. 610, x+114.Google Scholar
[16]Krause, H.Smashing subcategories and the telescope conjecture–an algebraic approach. Invent. Math. 139 (2000), no. 1, 99133.Google Scholar
[17]Krause, H.Cohomological quotients and smashing localizations. Amer. J. Math. 127 (2005), no. 6, 11911246.CrossRefGoogle Scholar
[18]Matsumura, H.Commutative Ring Theory, translated from the Japanese by M. Reid. Cambridge Studies in Advanced Math. no. 8. (Cambridge University Press, Cambridge, 1986).Google Scholar
[19]Neeman, A.The Brown representability theorem and phantomless triangulated categories. J. Algebra 151 (1992), no. 1, 118155.Google Scholar
[20]Neeman, A.The chromatic tower for D(R). Topology 31 (1992), no. 3, 519532.CrossRefGoogle Scholar
[21]Neeman, A.On a theorem of Brown and Adams. Topology 36 (1997), no. 3, 619645.Google Scholar
[22]Oberst, U. and Röhrl, H.Flat and coherent functors. J. Algebra 14 (1970), 91105.Google Scholar
[23]Quillen, D.The spectrum of an equivariant cohomology ring. I, II. Ann. of Math. (2) 94 (1971), 549572; ibid. (2) 94 (1971), 573–602.Google Scholar
[24]Stevenson, G.Support theory via actions of tensor triangulated categories. J. Reine Angew. Math. 681 (2013), 219254.Google Scholar
[25]Stevenson, G. Subcategories of singularity categories via tensor actions, arXiv:1105.4698. To appear in Compositio Math.Google Scholar
[26]Verdier, J.-L.Des catégories dérivées des catégories abéliennes. Astérisque 239 (1996), (1997), xii+253 pp.Google Scholar