Hostname: page-component-8448b6f56d-dnltx Total loading time: 0 Render date: 2024-04-18T02:56:02.030Z Has data issue: false hasContentIssue false

Ion tracks in amorphous silica

Published online by Cambridge University Press:  13 April 2015

Abdenacer Benyagoub*
Affiliation:
Centre de Recherche sur les Ions, les Matériaux et la Photonique (CIMAP, ex CIRIL-GANIL), CEA-CNRS-ENSICAEN-Université de Caen, Bd Henri Becquerel, BP 5133, F-14070 Caen Cedex 5, France
Marcel Toulemonde
Affiliation:
Centre de Recherche sur les Ions, les Matériaux et la Photonique (CIMAP, ex CIRIL-GANIL), CEA-CNRS-ENSICAEN-Université de Caen, Bd Henri Becquerel, BP 5133, F-14070 Caen Cedex 5, France
*
a)Address all correspondence to this author. e-mail: benyagoub@ganil.fr
Get access

Abstract

Investigations of the structural modifications induced in amorphous silica by ion irradiations in a wide energy range from ∼1 MeV to ∼1 GeV are reviewed. Several characterization methods such as infrared spectroscopy, chemical etching, dimensional measurements, and small-angle x-ray scattering have been used to measure the damage induced by individual ions and to analyze its evolution as a function of the energy released by the irradiating species. The comparison of the obtained results shows that high-energy ions lead to the formation along the ion trajectories of damaged zones (called ion tracks) above an electronic energy loss threshold depending on the ion specific energy. This threshold can be as low as ∼1.4 keV/nm for ion beams of 0.2 MeV/u and increases to ∼2.4 keV/nm at ∼5 MeV/u, in agreement with the velocity effect which predicts a narrower radial distribution of the deposited electronic energy with low-velocity ions than with high-velocity ions. Above these threshold values, track radii increase approximately with the square root of the electronic energy loss. In addition, for Au beams between 0.3 and 27 MeV, the generated damage exhibits a U-shaped dependence on the incident ion energy, suggesting a combined effect of the nuclear and electronic energy loss in this energy range. A unified thermal spike model taking into account the contributions of both energy losses allows to reproduce the whole experimental data.

Type
Reviews
Copyright
Copyright © Materials Research Society 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

This section of Journal of Materials Research is reserved for papers that are reviews of literature in a given area.

Contributing Editor: William J. Weber

References

REFERENCES

Klaumünzer, S. and Schumacher, G.: Dramatic growth of glassy Pd80Si20 during heavy-ion irradiation. Phys. Rev. Lett. 51, 1987 (1983).CrossRefGoogle Scholar
Klaumünzer, S., Hou, M.D., and Schumacher, G.: Coulomb explosions in a metallic-glass due to the passage of fast heavy-ions. Phys. Rev. Lett. 57, 850 (1986).CrossRefGoogle Scholar
Audouard, A., Balanzat, E., Fuchs, G., Jousset, J.C., Lesueur, D., and Thomé, L.: Radiation-damage induced by electronic-energy loss in amorphous metallic alloys. Europhys. Lett. 5, 241 (1988).CrossRefGoogle Scholar
Benyagoub, A. and Klaumünzer, S.: Swift heavy ion induced plastic deformation. Radiat. Eff. Defects Solids 126, 105 (1993).CrossRefGoogle Scholar
Iwase, A., Sasaki, S., and Iwata, T.: Anomalous reduction of stage-I recovery in nickel irradiated with heavy ions in the energy range 100–120 MeV. Phys. Rev. Lett. 58, 2450 (1987).CrossRefGoogle ScholarPubMed
Dunlop, A., Lesueur, D., Morillo, J., Dural, J., Spohr, R., and Vetter, J.: A new damage mechanism in a crystalline metallic target irradiated with heavy gigaelectronvolts ions. C. R. Acad. Sci. Paris, Ser. II 309, 1277 (1989).Google Scholar
Audouard, A., Balanzat, E., Bouffard, S., Jousset, J.C., Chamberod, A., Dunlop, A., Lesueur, D., Fuchs, G., Spohr, R., Vetter, J., and Thomé, L.: Evidence for amorphization of a metallic alloy by ion electronic-energy loss. Phys. Rev. Lett. 65, 875 (1990).CrossRefGoogle ScholarPubMed
Barbu, A., Dunlop, A., Lesueur, D., and Averback, R.S.: Latent tracks do exist in metallic materials. Europhys. Lett. 15, 37 (1991).CrossRefGoogle Scholar
Klaumünzer, S., Schumacher, G., Rentzsch, S., Vogl, G., Söldner, L., and Nieger, H.: Severe radiation damage by heavy ions in glassy Pd80Si20 . Acta Metall. 30, 1493 (1982).CrossRefGoogle Scholar
Audouard, A., Balanzat, E., Fuchs, G., Jousset, J.C., Lesueur, D., and Thomé, L.: High-energy heavy-ion irradiations of Fe85B15 amorphous alloy: Evidence for electronic energy loss effect. Europhys. Lett. 3, 327 (1987).CrossRefGoogle Scholar
Benyagoub, A., Levesque, F., Couvreur, F., Gibert-Mougel, C., Dufour, C., and Paumier, E.: Evidence of a phase transition induced in zirconia by high energy heavy ions. Appl. Phys. Lett. 77, 3197 (2000).CrossRefGoogle Scholar
Benyagoub, A.: Evidence of an ion-beam induced crystal line-to-crystal line phase transformation in hafnia. Eur. Phys. J. B 34, 395 (2003).CrossRefGoogle Scholar
Benyagoub, A.: Mechanism of the monoclinic-to-tetragonal phase transition induced in zirconia and hafnia by swift heavy ions. Phys. Rev. B 72, 094114 (2005).CrossRefGoogle Scholar
Benyagoub, A., Audren, A., Thomé, L., and Garrido, F.: Athermal crystallization induced by electronic excitations in ion-irradiated silicon carbide. Appl. Phys. Lett. 89, 241914 (2006).CrossRefGoogle Scholar
Benyagoub, A.: Irradiation effects induced in silicon carbide by low and high energy ions. Nucl. Instrum. Methods Phys. Res., Sect. B 266, 2766 (2008).CrossRefGoogle Scholar
Benyagoub, A. and Audren, A.: Mechanism of the swift heavy ion induced epitaxial recrystallization in predamaged silicon carbide. J. Appl. Phys. 106, 083516 (2009).CrossRefGoogle Scholar
Young, D.A.: Etching of radiation damage in lithium fluoride. Nature 182, 375 (1958).CrossRefGoogle ScholarPubMed
Silk, E.C.H. and Barnes, R.S.: Examination of fission fragment tracks with an electron microscope. Philos. Mag. 4, 970 (1959).CrossRefGoogle Scholar
Studer, F., Hervieu, M., Costantini, J-M., and Toulemonde, M.: High resolution electron microscopy of tracks in solids. Nucl. Instrum. Methods Phys. Res., Sect. B 122, 449 (1997).CrossRefGoogle Scholar
Dartyge, E.: Défauts d'irradiation liés à l'implantation dans le mica muscovite. J. Phys. Colloques 34(C5), C583 (1973).CrossRefGoogle Scholar
Albrecht, D., Armbruster, P., Spohr, R., Roth, M., Schaupert, K., and Stuhrmann, H.: Investigation of heavy ion produced defect structures in insulators by small angle scattering. Appl. Phys. A 37, 37 (1985).CrossRefGoogle Scholar
Albrecht, D., Balanzat, E., and Schaupert, K.: X-ray small-angle scattering investigation of high-energy Ar-tracks in mica. Nucl. Tracks Radiat. Meas. 11, 93 (1986).CrossRefGoogle Scholar
Dunlop, A. and Lesueur, D.: Damage creation via electronic excitations in metallic targets part I: Experimental results. Radiat. Eff. Defects Solids 126, 123 (1993).CrossRefGoogle Scholar
Vetter, J., Scholz, R., and Angert, N.: Investigation of latent tracks from heavy ions in GeS crystals by high resolution TEM. Nucl. Instrum. Methods Phys. Res., Sect. B 91, 129 (1994).CrossRefGoogle Scholar
Herre, O., Wesch, W., Wendler, E., Gaiduk, P.I., Komarov, F.F., Klaumünzer, S., and Meier, P.: Formation of discontinuous tracks in single-crystalline InP by 250-MeV Xe-ion irradiation. Phys. Rev. B 58, 4832 (1998).CrossRefGoogle Scholar
Szenes, G., Horváth, Z.E., Pécz, B., Pászti, F., and Tóth, L.: Tracks induced by swift heavy ions in semiconductors. Phys. Rev. B 65, 045206 (2002).CrossRefGoogle Scholar
Canut, B., Bonardi, N., Ramos, S.M.M., and Della-Negra, S.: Latent tracks formation in silicon single crystals irradiated with fullerenes in the electronic regime. Nucl. Instrum. Methods Phys. Res., Sect. B 146, 296 (1998).CrossRefGoogle Scholar
Dunlop, A., Jaskierowicz, G., and Della-Negra, S.: Latent track formation in silicon irradiated by 30 MeV fullerenes. Nucl. Instrum. Methods Phys. Res., Sect. B 146, 302 (1998).CrossRefGoogle Scholar
Colder, A., Marty, O., Canut, B., Levalois, M., Marie, P., Portier, X., Ramos, S.M.M., and Toulemonde, M.: Latent track formation in germanium irradiated with 20, 30 and 40 MeV fullerenes in the electronic regime. Nucl. Instrum. Methods Phys. Res., Sect. B 174, 491 (2001).CrossRefGoogle Scholar
Benyagoub, A., Löffler, S., Rammensee, R., and Klaumünzer, S.: Ion-beam-induced plastic-deformation in vitreous silica. Radiat. Eff. Defects Solids 110, 217 (1989).CrossRefGoogle Scholar
Benyagoub, A., Löffler, S., Rammensee, R., Klaumünzer, S., and Saemann-Ischenko, G.: Plastic-deformation in SiO2 induced by heavy-ion irradiation. Nucl. Instrum. Methods Phys. Res., Sect. B 65, 228 (1992).CrossRefGoogle Scholar
Furuno, S., Otsu, H., Hojou, K., and Izui, K.: Tracks of high energy heavy ions in solids. Nucl. Instrum. Methods Phys. Res., Sect. B 107, 223 (1996).CrossRefGoogle Scholar
Hedler, A., Klaumünzer, S., and Wesch, W.: Amorphous silicon exhibits a glass transition. Nat. Mater. 3, 804 (2004).CrossRefGoogle ScholarPubMed
Bierschenk, T., Giulian, R., Afra, B., Rodriguez, M.D., Schauries, D., Mudie, S., Pakarinen, O.H., Djurabekova, F., Nordlund, K., Osmani, O., Medvedev, N., Rethfeld, B., Ridgway, M.C., and Kluth, P.: Latent ion tracks in amorphous silicon. Phys. Rev. B 88, 174111 (2013).CrossRefGoogle Scholar
Wesch, W., Schnohr, C.S., Kluth, P., Hussain, Z.S., Araujo, L.L., Giulian, R., Sprouster, D.J., Byrne, A.P., and Ridgway, M.C.: Structural modification of swift heavy ion irradiated amorphous Ge layers. J. Phys. D: Appl. Phys. 42, 115402 (2009).CrossRefGoogle Scholar
Steinbach, T., Schnohr, C.S., Kluth, P., Giulian, R., Araujo, L.L., Sprouster, D.J., Ridgway, M.C., and Wesch, W.: Influence of electronic energy deposition on the structural modification of swift heavy-ion-irradiated amorphous germanium layers. Phys. Rev. B 83, 054113 (2011).CrossRefGoogle Scholar
Ridgway, M.C., Bierschenk, T., Giulian, R., Afra, B., Rodriguez, M.D., Araujo, L.L., Byrne, A.P., Kirby, N., Pakarinen, O.H., Djurabekova, F., Nordlund, K., Schleberger, M., Osmani, O., Medvedev, N., Rethfeld, B., and Kluth, P.: Tracks and voids in amorphous Ge induced by swift heavy-ion irradiation. Phys. Rev. Lett. 110, 245502 (2013).CrossRefGoogle ScholarPubMed
Mohanty, T., Satyam, P.V., Mishra, N.C., and Kanjilal, D.: Latent track creation in fused silica by 200 MeV silver beam. Radiat. Meas. 36, 137 (2003).CrossRefGoogle Scholar
Meftah, A., Brisard, F., Costantini, J.M., Dooryhée, E., Hage-Ali, M., Hervieu, M., Stoquert, J.P., Studer, F., and Toulemonde, M.: Track formation in SiO2 quartz and the thermal-spike mechanism. Phys. Rev. B 49, 12457 (1994).CrossRefGoogle ScholarPubMed
Busch, M.C., Slaoui, A., Siffert, P., Dooryhee, E., and Toulemonde, M.: Structural and electrical damage induced by high-energy heavy-ions in SiO2/Si structures. J. Appl. Phys. 71, 2596 (1992).CrossRefGoogle Scholar
Garrido, B., Samitier, J., Bota, S., Dominguez, C., Montserrat, J., and Morante, J.R.: Structural damage and defects created in SiO2-films by Ar ion-implantation. J. Non-Cryst. Solids 187, 101 (1995).CrossRefGoogle Scholar
Toulemonde, M., Weber, W.J., Li, G., Shutthanandan, V., Kluth, P., Yang, T., Wang, Y., and Zhang, Y.: Synergy of nuclear and electronic energy losses in ion-irradiation processes: The case of vitreous silicon dioxide. Phys. Rev. B 83, 054106 (2011).CrossRefGoogle Scholar
Kluth, P., Schnohr, C.S., Pakarinen, O.H., Djurabekova, F., Sprouster, D.J., Giulian, R., Ridgway, M.C., Byrne, A.P., Trautmann, C., Cookson, D.J., Nordlund, K., and Toulemonde, M.: Fine structure in swift heavy ion tracks in amorphous SiO2 . Phys. Rev. Lett. 101, 175503 (2008).CrossRefGoogle ScholarPubMed
Jensen, J., Razpet, A., Skupinski, M., and Possnert, G.: Ion tracks in amorphous SiO2 irradiated with low and high energy heavy ions. Nucl. Instrum. Methods Phys. Res., Sect. B 245, 269 (2006).CrossRefGoogle Scholar
Dallanora, A., Marcondes, T.L., Bermudez, G.G., Fichtner, P.F.P., Trautmann, C., Toulemonde, M., and Papaléo, R.M.: Nanoporous SiO2/Si thin layers produced by ion track etching: Dependence on the ion energy and criterion for etchability. J. Appl. Phys. 104, 024307 (2008).CrossRefGoogle Scholar
Fleischer, R.L., Price, P.B., and Walker, R.M.: Nuclear Tracks in Solids: Principles and Applications (University of California Press, Berkeley, 1975).CrossRefGoogle Scholar
Spohr, R.: Ion Tracks and Microtechnology: Principles and Applications (Vieweg, Braunschweig, 1990).CrossRefGoogle Scholar
Klaumünzer, S.: Ion tracks in quartz and vitreous silica. Nucl. Instrum. Methods Phys. Res., Sect. B 225, 136 (2004).CrossRefGoogle Scholar
Toulemonde, M., Assmann, W., Dufour, C., Meftah, A., Studer, F., and Trautmann, C.: Experimental phenomena and thermal spike model description of ion tracks in amorphisable inorganic insulators. Mat.-Fys. Medd. 52, 263 (2006).Google Scholar
Klaumünzer, S.: Thermal-spike models for ion track physics: A critical examination. Mat.-Fys. Medd. 52, 293 (2006).Google Scholar
Trautmann, C.: Micro- and nanoengineering with ion tracks. In Ion Beams in Nanoscience and Technology, Hellborg, R., Whitlow, H.J., and Zhang, Y. eds.; Springer-Verlag: Berlin, Heidelberg, 369387 2009.CrossRefGoogle Scholar
Primak, W.: The Compacted States of Vitreous Silica (Gordon and Breach Science Publishers, New York, 1975).Google Scholar
Klaumünzer, S. and Benyagoub, A.: Phenomenology of the plastic-flow of amorphous solids induced by heavy-ion bombardment. Phys. Rev. B 43, 7502 (1991).CrossRefGoogle ScholarPubMed
Audouard, A., Dural, J., Toulemonde, M., Lovas, A., Szenes, G., and Thomé, L.: Growth phenomenon in amorphous solids irradiated with GeV heavy ions: Electronic-energy-loss dependence of the initial growth rate. Phys. Rev. B 54, 15690 (1996).CrossRefGoogle ScholarPubMed
Audouard, A., Toulemonde, M., Szenes, G., and Thomé, L.: Something new about the giant deformation of amorphous alloys irradiated with GeV ions. Nucl. Instrum. Methods Phys. Res., Sect. B 146, 233 (1998).CrossRefGoogle Scholar
Benyagoub, A., Klaumünzer, S., and Toulemonde, M.: Radiation-induced compaction and plastic flow of vitreous silica. Nucl. Instrum. Methods Phys. Res., Sect. B 146, 449 (1998).CrossRefGoogle Scholar
Trinkaus, H. and Ryazanov, A.I.: Viscoelastic model for the plastic-flow of amorphous solids under energetic ion-bombardment. Phys. Rev. Lett. 74, 5072 (1995).CrossRefGoogle ScholarPubMed
Vollmayr, K., Kob, W., and Binder, K.: Cooling-rate effects in amorphous silica: A computer-simulation study. Phys. Rev. B 54, 15808 (1996).CrossRefGoogle ScholarPubMed
van Dillen, T., Snoeks, E., Fukarek, W., van Kats, C.M., Velikov, K.P., van Blaaderen, A., and Polman, A.: Anisotropic deformation of colloidal particles under MeV ion irradiation. Nucl. Instrum. Methods Phys. Res., Sect. B 175, 350 (2001).CrossRefGoogle Scholar
Rotaru, C., Pawlak, F., Khalfaoui, N., Dufour, C., Perrière, J., Laurent, A., Stoquert, J.P., Lebius, H., and Toulemonde, M.: Track formation in two amorphous insulators, vitreous silica and diamond like carbon: Experimental observations and description by the inelastic thermal spike model. Nucl. Instrum. Methods Phys. Res., Sect. B 272, 9 (2012).CrossRefGoogle Scholar
Awazu, K., Ishii, S., Shima, K., Roorda, S., and Brebner, J.L.: Structure of latent tracks created by swift heavy-ion bombardment of amorphous SiO2 . Phys. Rev. B 62, 3689 (2000).CrossRefGoogle Scholar
Dartyge, E.: Annealing of latent tracks of heavy-ions in mica muscovite. J. Phys. 39, 1287 (1978).CrossRefGoogle Scholar
Schwartz, K., Trautmann, C., Steckenreiter, T., Geiß, O., and Krämer, M.: Damage and track morphology in LiF crystals irradiated with GeV ions. Phys. Rev. B 58, 11232 (1998).CrossRefGoogle Scholar
Kluth, P., Schnohr, C.S., Sprouster, D.J., Byrne, A.P., Cookson, D.J., and Ridgway, M.C.: Measurement of latent tracks in amorphous SiO2 using small angle X-ray scattering. Nucl. Instrum. Methods Phys. Res., Sect. B 266, 2994 (2008).CrossRefGoogle Scholar
Guinier, A. and Fournet, G.: Small-Angle Scattering of X-rays (John Wiley, New York, 1955).Google Scholar
Fleischer, R.L. and Price, P.B.: Charged particle tracks in glass. J. Appl. Phys. 34, 2903 (1963).CrossRefGoogle Scholar
Sigrist, A. and Balzer, R.: Formation of track in crystals. Helv. Phys. Acta 50, 49 (1977).Google Scholar
Rotaru, C.: PhD Dissertation, University of Caen, France, 2004. http://tel.archives-ouvertes.fr/docs/00/04/65/00/PDF/tel-00005399.pdf.Google Scholar
Canut, B., Blanchin, M.G., Ramos-Canut, S., Teodorescu, V., and Toulemonde, M.: Incorporation of sol-gel SnO2:Sb into nanoporous SiO2 . Nucl. Instrum. Methods Phys. Res., Sect. B 245, 327 (2006).CrossRefGoogle Scholar
Bergamini, F., Bianconi, M., Cristiani, S., Gallerani, L., Nubile, A., Petrini, S., and Sugliani, S.: Ion track formation in low temperature silicon dioxide. Nucl. Instrum. Methods Phys. Res., Sect. B 266, 2475 (2008).CrossRefGoogle Scholar
Saint Martin, G., Bernaola, O.A., García Bermúdez, G., and Behar, M.: Evolution of ion track profiles in amorphous SiO2 . Radiat. Meas. 42, 130 (2007).CrossRefGoogle Scholar
Dartyge, E., Duraud, J.P., Langevin, Y., and Maurette, M.: New model of nuclear-particle tracks in dielectric minerals. Phys. Rev. B 23, 5213 (1981).CrossRefGoogle Scholar
Houpert, Ch., Studer, F., Groult, D., and Toulemonde, M.: Transition from localized defects to continuous latent tracks in magnetic insulators irradiated by high-energy heavy-ions: A HREM investigation. Nucl. Instrum. Methods Phys. Res., Sect. B 39, 720 (1989).CrossRefGoogle Scholar
Devine, R.A.B.: Macroscopic and microscopic effects of radiation in amorphous SiO2 . Nucl. Instrum. Methods Phys. Res., Sect. B 91, 378 (1994).CrossRefGoogle Scholar
Dufour, Ch., Audouard, A., Beuneu, F., Dural, J., Girard, J. P., Hairie, A., Levalois, M., Paumier, E., and Toulemonde, M.: A high-resistivity phase induced by swift heavy-ion irradiation of Bi: A probe for thermal spike damage?. J. Phys.: Condens. Matter 5, 4573 (1993).Google Scholar
Toulemonde, M., Dufour, Ch., Meftah, A., and Paumier, E.: Transient thermal processes in heavy ion irradiation of crystalline inorganic insulators. Nucl. Instrum. Methods Phys. Res., Sect. B 166167, 903 (2000).CrossRefGoogle Scholar
Waligorski, M.P.R., Hamm, R.N., and Katz, R.: The radial-distribution of dose around the path of a heavy-ion in liquid water. Nucl. Track Rad. Meas. 11, 309 (1986).CrossRefGoogle Scholar
Toulemonde, M., Assmann, W., Dufour, C., Meftah, A., and Trautmann, C.: Nanometric transformation of the matter by short and intense electronic excitation: Experimental data versus inelastic thermal spike model. Nucl. Instrum. Methods Phys. Res., Sect. B 277, 28 (2012).CrossRefGoogle Scholar
Toulemonde, M., Costantini, J.M., Dufour, Ch., Meftah, A., Paumier, E., and Studer, F.: Track creation in SiO2 and BaFe12O19 by swift heavy ions: A thermal spike description. Nucl. Instrum. Methods Phys. Res., Sect. B 116, 37 (1996).CrossRefGoogle Scholar
Ziegler, J.F., Biersack, J.P., and Littmark, U.: The Stopping and Range of Ions in Solids (Pergamon Press, New York, NY, 1985).Google Scholar
Sigmund, P. and Claussen, C.: Sputtering from elastic-collision spikes in heavy-ion-bombarded metals. J. Appl. Phys. 52, 990 (1981).CrossRefGoogle Scholar
Sigmund, P.: Reciprocity in the electronic stopping of slow ions in matter. Eur. Phys. J. D 47, 45 (2008).CrossRefGoogle Scholar
Jin, K., Zhang, Y., Zhu, Z., Grove, D.A., Xue, H., Xue, J., and Weber, W.J.: Electronic stopping powers for heavy ions in SiC and SiO2 . J. Appl. Phys. 115, 044903 (2014).CrossRefGoogle Scholar
Ramos, S.M., Charlaix, E., Benyagoub, A., and Toulemonde, M.: Wetting on nanorough surfaces. Phys Rev. E 67, 031604 (2003).CrossRefGoogle ScholarPubMed
Ramos, S.M., Benyagoub, A., Canut, B., and Jamois, C.: Superoleophobic behavior induced by nanofeatures on oleophilic surfaces. Langmuir 26(7), 5141 (2010).CrossRefGoogle ScholarPubMed
Milanez Silva, C., Varisco, P., Moehlecke, A., Fichtner, P.P., Papaléo, R.M., and Eriksson, J.: Processing of nano-holes and pores on SiO2 thin films by MeV heavy ions. Nucl. Instrum. Methods Phys. Res., Sect. B 206, 486 (2003).CrossRefGoogle Scholar
Velikov, K.P., van Dillen, T., Polman, A., and van Blaaderen, A.: Photonic crystals of shape-anisotropic colloidal particles. Appl. Phys. Lett. 81, 838 (2002).CrossRefGoogle Scholar
D’Orléans, C., Stoquert, J.P., Estournès, C., Cerruti, C., Grob, J.J., Guille, J.L., Haas, F., Muller, D., and Richard-Plouet, M.: Anisotropy of Co nanoparticles induced by swift heavy ions. Phys. Rev. B 67, 220101(R) (2003).CrossRefGoogle Scholar
Rizza, G.: Oral communication entitled “Plasmonic properties of ion-shaped nanoparticles”. Presented at the 19th International Conference on Ion Beam Modification of Materials (IBMM 2014), Leuven, (2014).Google Scholar