Journal of Fluid Mechanics

Papers

Langmuir turbulence in shallow water. Part 1. Observations

ANN E. GARGETTa1 and JUDITH R. WELLSa1

a1 Center for Coastal Physical Oceanography, Department of Ocean, Earth and Atmospheric Sciences, Old Dominion University, Norfolk, VA 23529, USA

Abstract

During extended deployment at an ocean observatory off the coast of New Jersey, a bottom-mounted five-beam acoustic Doppler current profiler measured large-scale velocity structures that we interpret as Langmuir circulations filling the entire water column. These circulations are the large-eddy structures of wind-wave-driven turbulent flows that occur episodically when a shallow water column experiences prolonged strong wind forcing. Many observational characteristics agree with former descriptions of Langmuir circulations in deep water. The three-dimensional velocity field reveals quasi-organized structures consisting of pairs of surface-intensified counter-rotating vortices, aligned approximately downwind. Maximum downward velocities are stronger than upward velocities, and the downwelling region of each cell, defined as a pair of vortices, is narrower than the upwelling region. Maximum downward vertical velocity occurs at or above mid-depth, and scales approximately with wind speed. The estimated crosswind scale of cells is roughly 3–6 times their vertical scale, set under these conditions by water depth. The long axis of the cells appears to lie at an angle xs223C10°–20° to the right of the wind. A major difference from deep-water observations is strong near-bottom intensification of the downwind ‘jets’ found typically centred over downwelling regions. Accessible observational features such as cell morphology and profiles of mean velocities, turbulent velocity variances, and shear stress components are compared with the results of associated large-eddy simulations (reported in Part 2) of shallow water flows driven by surface stress and the Craik–Leibovich vortex forcing generally used to represent generation of Langmuir cells. A particularly sensitive diagnostic for identification of Langmuir circulations as the energy-containing eddies of the turbulent flow is the depth trajectory of invariants of the turbulent stress tensor, plotted in the Lumley ‘triangle’ corresponding to realizable turbulent flows. When Langmuir structures are present in the observations, the Lumley map is distinctly different from that of surface-stress-driven Couette flow, again in agreement with the large-eddy simulations (LES). Unlike the LES, observed velocity fields contain two distinct and significant scales of variability, documented by wavelet analysis of observational records of vertical velocity. Variability with periods of many minutes is that expected from Langmuir cells drifting past the instrument at the slowly time-varying crosswind velocity. Shorter period variability, of the order of 1–2 min, has roughly the observed periodicity of surface wave groups, suggesting a connection with the wave groups themselves and/or the wave breaking associated with them in high wind conditions.

(Received October 20 2005)

(Revised October 13 2006)

Metrics