Hostname: page-component-76fb5796d-2lccl Total loading time: 0 Render date: 2024-04-25T11:00:34.642Z Has data issue: false hasContentIssue false

Commutator methods for the spectral analysis of uniquely ergodic dynamical systems

Published online by Cambridge University Press:  10 January 2014

R. TIEDRA DE ALDECOA*
Affiliation:
Facultad de Matemáticas, Pontificia Universidad Católica de Chile, Av. Vicuña Mackenna 4860, Santiago, Chile email rtiedra@mat.puc.cl

Abstract

We present a method, based on commutator methods, for the spectral analysis of uniquely ergodic dynamical systems. When applicable, it leads to the absolute continuity of the spectrum of the corresponding unitary operators. As an illustration, we consider time changes of horocycle flows, skew products over translations and Furstenberg transformations. For time changes of horocycle flows we obtain absolute continuity under assumptions weaker than those to be found in the literature, and for skew products over translations and Furstenberg transformations we obtain countable Lebesgue spectrum under assumptions not previously covered in the literature.

Type
Research Article
Copyright
© Cambridge University Press, 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abadie, B. and Dykema, K.. Unique ergodicity of free shifts and some other automorphisms of ${C}^{\ast } $-algebras. J. Operator Theory 61 (2) (2009), 279294.Google Scholar
Abraham, R. and Marsden, J. E.. Foundations of Mechanics, 2nd edn. Benjamin/Cummings Publishing Co., Reading, MA, 1978, revised and enlarged, with the assistance of Tudor Raţiu and Richard Cushman.Google Scholar
Amrein, W. O.. Hilbert Space Methods in Quantum Mechanics (Fundamental Sciences). EPFL Press, Lausanne, 2009.Google Scholar
Amrein, W. O., Boutet de Monvel, A. and Georgescu, V.. C 0-groups, Commutator Methods and Spectral Theory of N-body Hamiltonians (Progress in Mathematics, 135). Birkhäuser, Basel, 1996.Google Scholar
Astaburuaga, M. A., Bourget, O., Cortés, V. H. and Fernández, C.. Floquet operators without singular continuous spectrum. J. Funct. Anal. 238 (2) (2006), 489517.CrossRefGoogle Scholar
Baumgärtel, H. and Wollenberg, M.. Mathematical Scattering Theory (Operator Theory: Advances and Applications, 9). Birkhäuser, Basel, 1983.CrossRefGoogle Scholar
Bekka, M. B. and Mayer, M.. Ergodic Theory and Topological Dynamics of Group Actions on Homogeneous Spaces (London Mathematical Society Lecture Note Series, 269). Cambridge University Press, Cambridge, 2000.Google Scholar
Boutet de Monvel, A. and Georgescu, V.. The method of differential inequalities. Recent Developments in Quantum Mechanics (Poiana Braşov, 1989) (Mathematical Physics Studies, 12). Kluwer Academic Publishers, Dordrecht, 1991, pp. 279298.CrossRefGoogle Scholar
Boutet de Monvel, A. and Mantoiu, M.. The method of the weakly conjugate operator. Inverse and Algebraic Quantum Scattering Theory (Lake Balaton, 1996) (Lecture Notes in Physics, 488). Springer, Berlin, 1997, pp. 204226.Google Scholar
Choe, G. H.. Spectral properties of cocycles. ProQuest LLC, Ann Arbor, MI, 1987. PhD Thesis, University of California, Berkeley.Google Scholar
Cornfeld, I. P., Fomin, S. V. and Sinaĭ, Ya. G.. Ergodic Theory (Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], 245). Springer, New York, 1982, translated from the Russian by A. B. Sosinskiĭ.CrossRefGoogle Scholar
Coudène, Y.. A short proof of the unique ergodicity of horocyclic flows. Ergodic Theory (Contemporary Mathematics, 485). American Mathematical Society, Providence, RI, 2009, pp. 8589.CrossRefGoogle Scholar
Dani, S. G.. Invariant measures and minimal sets of horospherical flows. Invent. Math. 64 (2) (1981), 357385.CrossRefGoogle Scholar
Dani, S. G. and Smillie, J.. Uniform distribution of horocycle orbits for Fuchsian groups. Duke Math. J. 51 (1) (1984), 185194.Google Scholar
Dereziński, J. and Gérard, C.. Scattering Theory of Classical and Quantum N-particle Systems (Texts and Monographs in Physics). Springer, Berlin, 1997.Google Scholar
Fayad, B. R.. Skew products over translations on ${\mathbf{T} }^{d} , d\geq 2$. Proc. Amer. Math. Soc. 130 (1) (2002), 103109; electronic.Google Scholar
Fernández, C., Richard, S. and Tiedra de Aldecoa, R.. Commutator methods for unitary operators. J. Spectr. Theory 3 (3) (2013), 271292.CrossRefGoogle Scholar
Forni, G. and Ulcigrai, C.. Time-changes of horocycle flows. J. Mod. Dyn. 6 (2) (2012), 251273.Google Scholar
Frączek, K.. Spectral properties of cocycles over rotations. Master’s thesis, Nicolaus Copernicus University, Toruń, 1995. Preprint on http://www-users.mat.umk.pl/~fraczek/SPECPROP.pdf.Google Scholar
Frączek, K.. Circle extensions of ${\mathbf{Z} }^{d} $-rotations on the $d$-dimensional torus. J. Lond. Math. Soc. (2) 61 (1) (2000), 139162.Google Scholar
Frączek, K.. On cocycles with values in the group SU(2). Monatsh. Math. 131 (4) (2000), 279307.Google Scholar
Furstenberg, H.. Strict ergodicity and transformation of the torus. Amer. J. Math. 83 (1961), 573601.Google Scholar
Furstenberg, H.. The unique ergodicity of the horocycle flow. Recent Advances in Topological Dynamics (Proc. Conf., Yale University, New Haven, CN, 1972; in honor of Gustav Arnold Hedlund) (Lecture Notes in Mathematics, 318). Springer, Berlin, 1973, pp. 95115.Google Scholar
Georgescu, V., Gérard, C. and Møller, J. S.. Commutators, ${C}_{0} $-semigroups and resolvent estimates. J. Funct. Anal. 216 (2) (2004), 303361.CrossRefGoogle Scholar
Goodson, G. R.. A survey of recent results in the spectral theory of ergodic dynamical systems. J. Dyn. Control Syst. 5 (2) (1999), 173226.Google Scholar
Grabner, P. J. and Liardet, P.. Harmonic properties of the sum-of-digits function for complex bases. Acta Arith. 91 (4) (1999), 329349.Google Scholar
Gromov, A. L.. Spectral classification of some types of unitary weighted shift operators. Algebra i Analiz 3 (5) (1991), 6287.Google Scholar
Hahn, F. J.. Skew product transformations and the algebras generated by $\exp (p(n))$. Illinois J. Math. 9 (1965), 178190.Google Scholar
Hardy, G. H.. On certain criteria for the convergence of the Fourier series of a continuous function. Messenger of Math. 49 (1920), 149155.Google Scholar
Helson, H.. Cocycles on the circle. J. Operator Theory 16 (1) (1986), 189199.Google Scholar
Hofmann, K. H. and Morris, S. A.. The Structure of Compact Groups (de Gruyter Studies in Mathematics, 25), augmented edition. Walter de Gruyter & Co, Berlin, 2006.Google Scholar
Humphries, P. D.. Change of velocity in dynamical systems. J. Lond. Math. Soc. (2) 7 (1974), 747757.Google Scholar
Iwanik, A.. Anzai skew products with Lebesgue component of infinite multiplicity. Bull. London Math. Soc. 29 (2) (1997), 195199.Google Scholar
Iwanik, A.. Spectral properties of skew-product diffeomorphisms of tori. Colloq. Math. 72 (2) (1997), 223235.Google Scholar
Iwanik, A., Lemańczyk, M. and Rudolph, D.. Absolutely continuous cocycles over irrational rotations. Israel J. Math. 83 (1–2) (1993), 7395.Google Scholar
Jabbari, A. and Vishki, H. R. E.. Skew-product dynamical systems, Ellis groups and topological centre. Bull. Aust. Math. Soc. 79 (1) (2009), 129145.Google Scholar
Jensen, A., Mourre, É and Perry, P.. Multiple commutator estimates and resolvent smoothness in quantum scattering theory. Ann. Inst. H. Poincaré Phys. Théor. 41 (2) (1984), 207225.Google Scholar
Katok, A. and Thouvenot, J.-P.. Spectral properties and combinatorial constructions in ergodic theory. Handbook of Dynamical Systems. Vol. 1B. Elsevier, Amsterdam, 2006, pp. 649743.Google Scholar
Krengel, U.. Ergodic Theorems (de Gruyter Studies in Mathematics, 6). Walter de Gruyter & Co, Berlin, 1985, with a supplement by Antoine Brunel.Google Scholar
Kushnirenko, A. G.. Spectral properties of certain dynamical systems with polynomial dispersal. Moscow Univ. Math. Bull. 29 (1) (1974), 8287.Google Scholar
Lemańczyk, M.. Spectral theory of dynamical systems. Encyclopedia of Complexity and System Science. Springer, New York, 2009, pp. 85548575.CrossRefGoogle Scholar
Marcus, B.. Unique ergodicity of the horocycle flow: variable negative curvature case. Israel J. Math. 21 (2–3) (1975), 133144; Conference on Ergodic Theory and Topological Dynamics (Kibbutz Lavi, 1974).CrossRefGoogle Scholar
Marcus, B.. The horocycle flow is mixing of all degrees. Invent. Math. 46 (3) (1978), 201209.CrossRefGoogle Scholar
Milnes, P.. Ellis groups and group extensions. Houston J. Math. 12 (1) (1986), 87108.Google Scholar
Mourre, É. Absence of singular continuous spectrum for certain selfadjoint operators. Comm. Math. Phys. 78 (3) (1980/81), 391408.Google Scholar
Parasyuk, O. S.. Flows of horocycles on surfaces of constant negative curvature. Uspehi Matem. Nauk (N.S.) 8 (3(55)) (1953), 125126.Google Scholar
Perry, P., Sigal, I. M. and Simon, B.. Spectral analysis of $N$-body Schrödinger operators. Ann. of Math. (2) 114 (3) (1981), 519567.Google Scholar
Putnam, C. R.. Commutation Properties of Hilbert Space Operators and Related Topics (Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 36). Springer, New York, 1967.Google Scholar
Quint, J.-F.. Examples of unique ergodicity of algebraic flows. http://www.math.univ-paris13.fr/~quint/publications/courschine.pdf.Google Scholar
Sahbani, J.. The conjugate operator method for locally regular Hamiltonians. J. Operator Theory 38 (2) (1997), 297322.Google Scholar
Tiedra de Aldecoa, R.. Spectral analysis of time changes of horocycle flows. J. Mod. Dyn. 6 (2) (2012), 275285.Google Scholar
Walters, P.. An Introduction to Ergodic Theory (Graduate Texts in Mathematics, 79). Springer, New York, 1982.Google Scholar