Hostname: page-component-8448b6f56d-xtgtn Total loading time: 0 Render date: 2024-04-19T00:58:53.041Z Has data issue: false hasContentIssue false

Non-degenerate singularities of integrable dynamical systems

Published online by Cambridge University Press:  09 October 2013

NGUYEN TIEN ZUNG*
Affiliation:
Institut de Mathématiques de Toulouse, UMR5219, Université Toulouse 3, France email tienzung.nguyen@math.univ-toulouse.fr

Abstract

We give a natural notion of non-degeneracy for singular points of integrable non-Hamiltonian systems, and show that such non-degenerate singularities are locally geometrically linearizable and deformation rigid in the analytic case. We conjecture that the same result also holds in the smooth case, and prove this conjecture for systems of type $(n, 0)$, i.e. $n$ commuting smooth vector fields on an $n$-manifold.

Type
Research Article
Copyright
© Cambridge University Press, 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ayoul, M. and Zung, N. T.. Galoisian obstructions to non-Hamiltonian integrability. C. R. Math. Acad. Sci. Paris, Ser. I 348 (23) (2010), 13231326.Google Scholar
Bates, L. and Cushman, R.. What is a completely integrable nonholonomic dynamical system? Rep. Math. Phys. 44 (1–2) (1999), 2935.Google Scholar
Belitskii, G. R. and Kopanskii, A. Y.. Equivariant Sternberg–Chen theorem. J. Dynam. Differential Equations 14 (2) (2002), 349367.CrossRefGoogle Scholar
Bogoyavlenskij, O. I.. Extended integrability and bi-Hamiltonian systems. Comm. Math. Phys. 196 (1) (1998), 1951.CrossRefGoogle Scholar
Chaperon, M.. Géométrie différentielle et singularités de systèmes dynamiques (Astérisque 138–139). 1986, 440 pp.Google Scholar
Chen, K. T.. Equivalence and decomposition of vector fields about an elementary critical point. Amer. J. Math. 85 (1963), 693722.Google Scholar
Colin de Verdier, Y. and Vey, J.. Le lemme de Morse isochore. Topology 18 (1979), 283293.CrossRefGoogle Scholar
Dufour, J. P. and Molino, P.. Compactification d’actions de ${ \mathbb{R} }^{n} $et variables action-angle avec singularités. Publications du Département de Mathématiques, Lyon, 1988, No. 1B, pp. 161–183.Google Scholar
Eliasson, L. H.. Normal forms for Hamiltonian systems with Poisson commuting integrals – elliptic case. Comment. Math. Helv. 65 (1) (1990), 435.CrossRefGoogle Scholar
Fedorov, Yu. N. and Kozlov, V. V.. Various aspects of n-dimensional rigid body dynamics. Trans. Amer. Math. Soc. Ser. 2 168 (1995), 141171.Google Scholar
Ito, H.. Convergence of Birkhoff normal forms for integrable systems. Comment. Math. Helv. 64 (3) (1989), 412461.Google Scholar
Mather, J.. Stability of ${C}^{\infty } $ mappings, III. Finitely determined map-germs. Publ. Math. Inst. Hautes Études Sci. 35 (1969), 127156.Google Scholar
Sternberg, S.. On the structure of local homeomorphisms of Euclidean $n$-space, II. Amer. J. Math. 80 (1958), 623631.Google Scholar
Stolovitch, L.. Singular complete integrability. Publ. Inst. Hautes Études Sci. 91 (2000), 134210.Google Scholar
Vey, J.. Sur certains systèmes dynamiques séparables. Amer. J. Math. 100 (3) (1978), 591614.Google Scholar
Ziglin, S. L.. Branching of solutions and non-existence of first integrals in Hamiltonian mechanics. Func. Anal. Appl. 16 (1982), 181189.CrossRefGoogle Scholar
Zung, N. T.. Symplectic topology of integrable Hamiltonian systems. I. Arnold–Liouville with singularities. Compositio Math. 101 (2) (1996), 179215.Google Scholar
Zung, N. T.. Convergence versus integrability in Poincaré–Dulac normal forms. Math. Res. Lett. 9 (2002), 217228.Google Scholar
Zung, N. T.. Convergence versus integrability in Birkhoff normal forms. Ann. of Math. (2) 161 (1) (2005), 141156.CrossRefGoogle Scholar
Zung, N. T.. Torus actions and integrable systems. Topological Methods in the Theory of Integrable Systems. Eds. Bolsinov, A. V., Fomenko, A. T. and Oshemkov, A. A.. Cambridge Scientific Publishers, Cambridge, 2006, pp. 289328.Google Scholar
Zung, N. T. and Minh, N. V.. Geometry of nondegenerate ${ \mathbb{R} }^{n} $-actions on $n$-manifolds. J. Math. Soc. Japan, to appear, Preprint, 2012, arxiv:1203.2765.Google Scholar