Hostname: page-component-8448b6f56d-c47g7 Total loading time: 0 Render date: 2024-04-19T00:10:11.266Z Has data issue: false hasContentIssue false

Phylogenetic revision of the Late Ordovician orthid brachiopod genera Plaesiomys and Hebertella from Laurentia

Published online by Cambridge University Press:  14 July 2015

David F. Wright
Affiliation:
School of Earth Sciences, The Ohio State University, 155 South Oval Mall, Columbus, OH 43210, USA,
Alycia L. Stigall
Affiliation:
Department of Geological Sciences and OHIO Center for Ecology and Evolutionary Studies, Ohio University, 316 Clippinger Laboratories, Athens, OH 45701, USA,

Abstract

The orthidine brachiopod genera Plaesiomys and Hebertella are significant constituents of Late Ordovician benthic marine communities throughout Laurentia. Species-level phylogenetic analyses were conducted on both genera to inform systematic revisions and document evolutionary relationships. Phylogenetic analyses combined discrete and continuous characters, from which character states were determined using a statistical approach, and utilized both cladistic and Bayesian methodologies. Plaesiomys cutterensis, P. idahoensis, and P. occidentalis are herein recognized as distinct species rather than subspecies of P. subquadratus. Similarly, Hebertella montoyensis and H. prestonensis are recognized as distinct species separate from H. occidentalis, and H. richmondensis is recognized as a distinct species rather than a geographical variant of H. alveata. Hebertella subjugata is removed from its tentative synonymy with H. occidentalis and revalidated.

The development of species-level evolutionary hypotheses for Plaesiomys and Hebertella provides a detailed framework for assessing evolutionary and paleobiogeographic patterns of Late Ordovician brachiopods from Laurentia. The geographic range of Hebertella expanded throughout Laurentia during the Richmondian into both intracratonic and marginal basins. Plaesiomys subquadratus participated in the Late Ordovician Richmondian Invasion. The recovered phylogenetic topology for Plaesiomys suggests that P. subquadratus may have migrated into the Cincinnati region from a basin situated to the paleo-northeast.

Type
Research Article
Copyright
Copyright © The Paleontological Society 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alberstadt, L. P. 1973. Articulate brachiopods of the Viola Formation (Ordovician) in the Arbuckle Mountains, Oklahoma. Oklahoma Geological Survey, Bulletin 117, 90p.Google Scholar
Alexander, R. R. 1984. Comparative hydrodynamic stability of brachiopod shells on current-scoured arenaceous substrates. Lethaia, 17:1732.CrossRefGoogle Scholar
Alexander, R. R. and Scharpf, C. D. 1990. Epizoans on Late Ordovician brachiopods from southeastern Indiana. Historical Biology, 4:179202.CrossRefGoogle Scholar
Alroy, J. 1994. Four permutation tests for the presence of phylogenetic structure. Systematic Biology, 43:430437.CrossRefGoogle Scholar
Bassler, R. S. 1932. The stratigraphy of the Central Basin of Tennessee. Tennessee Division of Geology Bulletin 38, 268p.Google Scholar
Billings, E. 1862. New species of fossils from different parts of the lower, middle, and upper Silurian rocks of Canada. Geological Survey of Canada, Palaeozoic Fossils, 1:96168.Google Scholar
Bradley, J. H. 1921. The brachiopoda of the Maquoketa of Iowa, Harvard College Museum of Comparative Zoology Bulletin, 64:503525.Google Scholar
Davis, M. A. 2009. Invasion Biology. Oxford University Press, Oxford, 244p.CrossRefGoogle Scholar
Davis, R. A. 1985. Cincinnati fossils, an elementary guide to the Ordovician rocks and fossils of the Cincinnati, Ohio, region. Cincinnati Museum of Natural History Popular Publication Series 10, 60p.Google Scholar
Castor, K. E., Dalve, E. A., and Pope, J. K. 1961. Elementary guide to the fossils and strata of the Ordovician in the vicinity of Cincinnati, Ohio. Cincinnati Museum of Natural History, 47p.Google Scholar
Cocks, L. R. M. 2008. A revised review of British lower Palaeozoic brachiopods. Palaeontographical Society Monograph 161, 231p.Google Scholar
Cocks, L. R. M. and Torsvik, T. H. 2011. The Palaeozoic geography of Laurentia and western Laurussia: A stable craton with mobile margins. Earth Sciences Reviews, 106:151.CrossRefGoogle Scholar
Cooper, G. A. 1930. The brachiopod genus Pionodema and its homeomorphs. Journal of Paleontology, 4:369382.Google Scholar
Cooper, G. A. 1956. Chazyan and related brachiopods. Smithsonian Miscellaneous Collections, 127 (1):11024; 127(2):1025–1245.Google Scholar
Cummings, E. R. 1908. The stratigraphy and paleontology of the Cincinnati series of Indiana. Indiana Department of Geology and Natural Resources Annual Report, 32:6071189.Google Scholar
Emmons, E. 1842. Geology of New York, Part 2, comprising the survey of the second geological district. White and J. Visscher, Albany, 437p.Google Scholar
Felsenstein, J. 2004. Inferring Phylogenies. Sinauer, Sunderland, Massachusetts, 664p.Google Scholar
Foerste, A. F. 1909a. Preliminary notes on Cincinnati fossils. Bulletin of the Scientific Laboratory of Denison University, 14:208232.Google Scholar
Foerste, A. F. 1909b. Preliminary notes on Cincinnati and Lexington fossils. Bulletin of the Scientific Laboratory of Denison University, 14:298324.Google Scholar
Foerste, A. F. 1910. Preliminary notes on Cincinnatian and Lexington fossils of Ohio, Indiana, Kentucky, and Tennessee. Bulletin of the Scientific Laboratory of Denison University, 16:17100.Google Scholar
Foerste, A. F. 1912. The Arnheim Formation within the areas traversed by the Cincinnati Geanticline. The Ohio Naturalist, 12:429456.Google Scholar
Foerste, A. F. 1914a. Notes on the Lorraine faunas of New York and the Province of Quebec. Bulletin of the Scientific Laboratory of Denison University, 17:247340.Google Scholar
Foerste, A. F. 1914b. The Rogers Gap fauna of central Kentucky. Cincinnati Society of Natural History Journal, 21:109156.Google Scholar
Freudenstein, J. V. and Davis, J. I. 2002. Branch support via resampling: An empirical study. Cladistics, 26:643656.CrossRefGoogle Scholar
Gregor, D. K. and Born, K. E. 1936. Stratigraphy and fauna of the Fernvale Formation (Illinois). Washington University Studies, Science and Technology, 6:6777.Google Scholar
Hall, J. 1847. Descriptions of the organic remains of the lower division of the New York System. New York State Geological Survey, Palaeontology of New York, 1, 338p.Google Scholar
Hall, J. and Clark, J. M. 1892. An introduction to the study of the genera of Palaeozoic Brachiopoda. New York State Geological Survey, Palaeontology of New York, 8 (1), 367p.Google Scholar
Hammer, T., Harper, D. A. T., and Ryan, P. D. 2001. PAST: Paleontological statistics software package for education and data analysis. Paleontologia Electronica, 4:19.Google Scholar
Harper, D. A. T. 1984. Brachiopods from the upper Ardmillan succession (Ordovician) of the Girvan District, Scotland, Part 1. Monograph of the Palaeontographical Society, 136:178.CrossRefGoogle Scholar
Hennig, W. 1966. Phylogenetic Systematics. Translated byDavis, D. D. and Zangerl, R.University of Illinois Press, Chicago, 263p.Google Scholar
Hiller, N. 1980. Ashgill Brachiopoda from the Glyn Ceiriog District, north Wales. Bulletin of the British Museum (Natural History), Geology Series, 34:109216.Google Scholar
Hillis, D. M. 1995. Approaches to assessing phylogenetic accuracy. Systematic Biology, 44:316CrossRefGoogle Scholar
Hillis, D. M. and Huelsenbeck, J. P. 1992. Signal, noise, and reliability in molecular phylogenetic analyses. Journal of Heredity, 83:189195.CrossRefGoogle ScholarPubMed
Holland, S. M. and Patzkowsky, M. E. 1996. Sequence stratigraphy and long-term paleooceanographic change in the Middle and Upper Ordovician of the eastern United States, p. 117129. InWitzke, B. J., Ludvigson, G. A., and Day, J.(eds.), Paleozoic Sequence Stratigraphy: Views from the North American Craton. Geological Society of America Special Paper 306.Google Scholar
Hopkins, M. J. 2011. Species-level phylogenetic analysis of Pterocephaliids (Trilobita, Cambrian) from the Great Basin, Western U.S.A. Journal of Paleontology, 85:11281153.CrossRefGoogle Scholar
Howe, H. J. 1966. Orthacea from the Montoya Group (Ordovician) of Trans-Pecos Texas. Journal of Paleontology, 40:241257.Google Scholar
Howe, H. J. 1988. Articulate brachiopods from the Richmondian of Tennessee. Journal of Paleontology, 62:204218.CrossRefGoogle Scholar
Huelsenbeck, J. P. 1991. Tree-length distribution skewness: An indicator of phylogenetic information. Systematic Zoology, 40:257270.CrossRefGoogle Scholar
Hunt, G. 2007. Morphology, ontogeny, and phylogenetics of genus Poseidonamicus (Ostracoda: Thaerocytherinae). Journal of Paleontology, 81:607631.CrossRefGoogle Scholar
International Commission on Zoological Nomenclature. 1999. International Code of Zoological Nomenclature. International Trust for Zoological Nomenclature, London, 306p.Google Scholar
James, U. P. 1871. Catalogue of Lower Silurian fossils, Cincinnati Group, Ohio, 14p.Google Scholar
Jin, J. 2001. Evolution and extinction of the North American Hiscobeccus Fauna during the Late Ordovician. Canadian Journal of Earth Science, 38:143151.Google Scholar
Jin, J. and Norford, B. S. 1996. Upper Ordovician (Caradoc) brachiopods from the Advance Formation, northern Rocky Mountains, British Columbia, p. 2077. InAdvance Formation: Stratigraphy and Biostratigraphy of a New Ordovician Formation from the Rocky Mountains, Northeastern British Columbia. Geological Survey of Canada Bulletin 491.Google Scholar
Jin, J. and Zhan, R.-B. 2001. Late Ordovician articulate brachiopods from the Red River and Stony Mountain formations, southern Manitoba. National Research Council of Canada, Ottawa, 117p.CrossRefGoogle Scholar
Jin, J. and Zhan, R.-B. 2008. Late Ordovician Orthide and Billingsellide Brachiopods from Anticosti Island, Eastern Canada: Diversity Change Through Mass Extinction. National Research Council of Canada, Ottawa, 151p.Google Scholar
Jin, J., Zhan, R.-B., Copper, P., and Caldwell, W. G. E. 2007. Epipunctae and phosphatized setae in Late Ordovician Plaesiomyid brachiopods from Anticosti Island, Eastern Canada. Journal of Paleontology, 81:666683.CrossRefGoogle Scholar
Jin, J. W., Caldwell, G. E., and Norford, B. S. 1997. Late Ordovician brachiopods and biostratigraphy of the Hudson Bay lowlands, Northern Manitoba and Ontario. Geological Survey of Canada Bulletin 513, 258p.Google Scholar
Klassen, G. J., Mooi, R. D., and Locke, A. 1991. Consistency indices and random data. Systematic Zoology, 50:446457.CrossRefGoogle Scholar
Kulkov, N. P. and Severgina, L. G. 1989. Stratigrafiya I brakhiopody ordovika I nizhnego silura Gornogo Altaya. Akademiya Nauk SSSR, Sibirskoe Otdelenie, Trudy Instituta Geologii I Geofiziki, 717, 223p.Google Scholar
Labarbera, M. 1981. Water flow patterns in and around three species of Articulate brachiopods. Journal of Experimental Marine Biology and Ecology, 55:185206.CrossRefGoogle Scholar
Ladd, H. S. 1929. The stratigraphy and paleontology of the Maquoketa Shale of Iowa, Pt. 1. In Annual Report, 1928, Iowa Geological Survey Report, 34:309448.Google Scholar
Laurie, J. R. 1991. Articulate brachiopods from the Ordovician and lower Silurian of Tasmania. Association of Australasian Palaeontologists Memoir, 11:1106.Google Scholar
Leighton, L. R. and Maples, C. G. 2002. Evaluating internal versus external characters: Phylogenetic analyses of Echinoconchidae, Bruxtoniinae, and Juresaniinae (phylum Brachiopoda). Journal of Paleontology, 76:659671.2.0.CO;2>CrossRefGoogle Scholar
Lewis, P. O. 2001. A likelihood approach to estimating phylogeny from discrete morphological character data. Systematic Biology, 50:913925.CrossRefGoogle ScholarPubMed
Macomber, R. W. 1970. Articulate brachiopods from the Upper Bighorn Formation (Late Ordovician) of Wyoming. Journal of Paleontology, 44:416450.Google Scholar
Maddison, W. P. and Maddison, D. R. 2003. MacClade: Analysis of phylogeny and character evolution, v. 4.06. Sinauer, Sunderland, Massachusetts.Google Scholar
Malizia, R. and Stigall, A. L. 2011. Niche stability in Late Ordovician articulated brachiopod species before, during, and after the Richmondian Invasion. Palaeogeography, Palaeoclimatology, Palaeoecology, 311:154170.CrossRefGoogle Scholar
Meek, F. B. 1873. Descriptions of invertebrate fossils of the Silurian and Devonian systems. Ohio Geological Survey. Vol. 1, Pt. 2. Palaeontology, 243p.Google Scholar
Meyer, D. L. and Davis, R. A. 2009. A Sea Without Fish: Life in the Ordovician Sea of the Cincinnati Region. Indiana University Press, Bloomington, 346p.Google Scholar
Mitchell, W. I. 1977. The Ordovician Brachiopoda from Pomeroy, Co. Tyrone. Palaeontographical Society Monographs, 130, 138p.Google Scholar
Morton, C. M. and Kincaid, D. T. 1995. A model for coding pollen size in reference to phylogeny using examples from the Ebenaceae. American Journal of Botany, 82:11731178.CrossRefGoogle Scholar
Okultich, V. J. 1943. The Stony Mountain Formation of Manitoba. Transactions of the Royal Society of Canada, 37:5974.Google Scholar
Oraspold, A. L. 1959. Some representatives of the superfamily Orthacea from the Upper Ordovician of Estonia. Tartu Ulikooli Geoloogia Instituudi Toimetised, 75:5181. (In Russian)Google Scholar
Pagel, M. and Meade, A. 2004. A phylogenetic mixture model for detecting pattern-heterogeneity in gene sequence or character-state data. Systematic Biology, 53:571581.CrossRefGoogle ScholarPubMed
Patzkowsky, M. E. and Holland, S. M. 2007. Diversity partitioning of a Late Ordovician marine biotic invasion: Controls on diversity in regional ecosystems. Paleobiology, 33:295309.CrossRefGoogle Scholar
Popov, L. E. and Cocks, L. R. M., 2006. Late Ordovician brachiopods from the Dulankara Formation of the Chu-Ili Range, Kazakhstan: Their systematics, palaeoecology and palaeobiogeography. Palaeontology, 49:247283.CrossRefGoogle Scholar
Popov, L. E., Nikitin, I. F., and Cocks, L. R. M. 2000. Late Ordovician brachiopods from the Otar Member of the Chu-Ili Range, South Kazakhstan. Palaeontology, 42:625661.CrossRefGoogle Scholar
Raymond, P. E. 1928. The brachiopods of the Lenoir and Athens Formations of Tennessee and Virginia. Harvard University Museum of Comparative Zoology Bulletin, 68:293.Google Scholar
Reed, F. R. C. 1952. Revision of certain Ordovician fossils from County Tyrone. Proceedings from the Royal Irish Academy, 55:29136.Google Scholar
Richards, R. P. 1972. Autecology of Richmondian brachiopods. Journal of Paleontology, 46:386405.Google Scholar
Rode, A. L. 2004. Phylogenetic revision of the Devonian bivalve, Leptodesma (Leiopteria). Yale University Postilla, 229:126.Google Scholar
Rode, A. L. and Lieberman, B. S. 2004. Using GIS to unlock the interactions between biogeography, environment, and evolution in Middle and Late Devonian brachiopods and bivalves. Palaeogoegraphy, Palaeoclimatology, Palaeogeography, 211:345359.CrossRefGoogle Scholar
Ronquist, F., Teslenko, M., Van Der Mark, P., Ayres, D. L., Darling, A., Höhna, S., Larget, B., Liu, L., Suchard, M. A., and Huelsenbeck, J. P. 2012. MrBayes 3.2: Efficient Bayesian phylogenetic inference and model choice across a large model space. Systematic Biology, 61:539542.CrossRefGoogle ScholarPubMed
Ross, R. J. 1959. Brachiopod fauna of Saturday Mountain Formation, southern Lemhi Range, Idaho. U. S. Geological Survey Professional Paper, 294-L:441461.Google Scholar
Roy, S. K. 1941. The Upper Ordovician fauna of Frobisher Bay, Baffin Land, Field Museum of Natural History (Geology) Memoir 2, 212p.Google Scholar
Sardeson, R. W. 1892. The range and distribution of the lower Silurian fauna of Minnesota with descriptions of some new species. Minnesota Academy of Natural Sciences Bulletin, 3:326343.Google Scholar
Schuchert, C. 1900. On the lower Silurian (Trenton) fauna of Baffin Land. Proceedings of the United States National Museum, 22:143177CrossRefGoogle Scholar
Schuchert, C. 1913. Class 2. Brachiopoda, p. 355420. Invon Zittel, K. A.(ed.), Textbook of Paleontology, 2. Macmillan, London.Google Scholar
Schuchert, C. and Cooper, G. A. 1930. Upper Ordovician and Lower Devonian stratigraphy and paleontology of Percé, Quebec. American Journal of Science, 2:161176.CrossRefGoogle Scholar
Schuchert, C. and Cooper, G. A. 1931. Synopsis of the brachiopod genera of the suborders Orthoidea and Pentameroidea, with notes on the Telotremata. American Journal of Science, 5:241255.CrossRefGoogle Scholar
Schuchert, C. and Cooper, G. A. 1932. Brachiopod genera of the suborders Orthoidea and Pentameroidea. Peabody Museum of Natural History Memoir, 4 (1), 270p.Google Scholar
Schuchert, C. and Levene, C. M. 1929. New names for brachiopod homonyms. American Journal of Science, 17:119122.CrossRefGoogle Scholar
Schwimmer, B. A. and Sandy, M. R. 1996. Phylum Brachiopoda, p. 210241. InFeldmann, R. M. and Hackathorn, M.(eds.), Fossils of Ohio. Ohio Department of Natural Resources Bulletin, 70.Google Scholar
Shaler, N. S. 1865. List of the Brachiopoda from the island of Anticosti sent by the Museum of Comparative Zoology to different institutions for exchange for other specimens, with annotations. Harvard University, Museum of Comparative Zoology Bulletin, 1:6170.Google Scholar
Sober, E. 2004. The contest between parsimony and likelihood. Systematic Biology, 53:644653.CrossRefGoogle ScholarPubMed
Spencer, M. R. and Wilberg, E. W. 2013. Efficacy or convenience? Model-based approaches to phylogeny estimation using morphological data. Cladistics, doi:10.1111/cla.12018.CrossRefGoogle Scholar
Stigall, A. L. 2010a. Using GIS to assess the biogeographic impact of species invasions on native brachiopods during the Richmondian Invasion in the Type-Cincinnatian (Late Ordovician, Cincinnati Region). Palaeontologia Electronica, 13 (1):5A.Google Scholar
Stigall, A. L. 2010b. Speciation decline during the Late Devonian Biodiversity Crisis related to species invasions. PLoS ONE, 5 (12):e15584.CrossRefGoogle Scholar
Stigall, A. L. 2012. Using ecological niche modeling to evaluate niche stability in deep time. Journal of Biogeography, 39:772781.CrossRefGoogle Scholar
Stigall, A. L. 2005. Systematic revision of the Middle and Late Devonian brachiopods Schizophoria (Schizophoria) and ‘Schuchertella' from North America. Journal of Systematic Palaeontology, 3:133167.CrossRefGoogle Scholar
Swiderski, D. L., Zelditch, M. L., and Fink, W. L. 1998. Why morphometrics is not special: Coding quantitative data for phylogenetic analysis. Systematic Biology, 47:508519.Google Scholar
Swofford, D. L. 2002. PAUP∗. Phylogenetic analysis using parsimony∗ 4.0. Sinauer, Sunderland, Massachusetts.Google Scholar
Twenhofel, W. H. 1928. Geology of Anticosti Island, Geological Survey of Canada Memoir 154, 481p.Google Scholar
Ulrich, E. O. and Cooper, G. A. 1942. New genera of Ordovician brachiopods. Journal of Paleontology, 16:620626.Google Scholar
Wagner, P. J. 2000. Phylogenetic analyses and the fossil record: Tests and inferences, hypotheses and models. Paleobiology, 26:341371.CrossRefGoogle Scholar
Wagner, P. J. 2011. Modelling rate distributions using character compatibility: Implications for morphological evolution among fossil invertebrates. Biology Letters, 8:143146.CrossRefGoogle ScholarPubMed
Walker, L. G. 1982. The brachiopod genus Hebertella, Dalmanella, and Heterothina from the Ordovician of Kentucky. U. S. Geological Survey Paper 1066-M, 17p.CrossRefGoogle Scholar
Wang, Y. 1949. Maquoketa Brachiopoda of Iowa. Geological Society of America Memoir, 42, 55p.Google Scholar
Wiley, E. O. and Lieberman, B. S. 2011. Phylogenetics: Theory and Practice of Phylogenetic Systematics (second edition). John Wiley and Sons, New Jersey, 406p.CrossRefGoogle Scholar
Williams, A. and Harper, D. A. T. 2000. Order Orthida, p. H733H734. InKaesler, R. L.(ed.), Treatise on Invertebrate Paleontology. Pt. H. Brachiopoda (revised) 3. Geological Society of America and University of Kansas Press, Lawrence.Google Scholar
Williams, A. and Wright, A. D. 1965. Orthida, p. 299395. InMoore, R. C.(ed.), Treatise on Invertebrate Paleontology, Pt. H1. Geological Society of America and University of Kansas Press, Lawrence.Google Scholar
Wilson, A. E. 1926. An Upper Ordovician fauna from the Rocky Mountains, British Columbia. Canada Geological Survey Museum Bulletin, 44:134.Google Scholar
Winchell, N. H. 1881. New brachiopoda from the Trenton and Hudson River formations in Minnesota, Minnesota Geological and Natural History Survey Annual Report, 9:115122.Google Scholar
Winchell, N. H. and Schuchert, C. 1892. Preliminary descriptions of new Brachiopoda from the Trenton and Hudson River groups of Minnesota. American Geologist, 9:284294.Google Scholar
Winchell, N. H. and Schuchert, C. 1893. The Lower Silurian Brachiopoda of Minnesota. Geological and Natural history Survey Final Report, 3:333374.Google Scholar
Wilkinson, M. 1964. The permutation method and character compatibility. Systematic Biology, 43:274277.CrossRefGoogle Scholar
Wright, A. D. 1964. The fauna of the Portrane Limestone, II. Bulletin of the British Museum of Natural History, Geology, 9:159256.Google Scholar
Wright, D. F. and Stigall, A. L. 2012. Paleobiogeography of the Late Ordovician Richmondian Invasion: Inferring source regions from phylogenetic patterns. Geological Society of America Abstracts with Programs, 44:5.Google Scholar
Wright, D. F. and Stigall, A. L.In press. Species-level phylogenetic revision of the Ordovician orthide brachiopod genus Glyptorthis from North America. Journal of Systematic Palaeontology.Google Scholar
Woodward, S. P. 1852. A manual of the Mollusca; or rudimentary treatise of recent and fossil shells. London, 486p.CrossRefGoogle Scholar
Yang, Z. and Rannala, B. 2012. Molecular phylogenetics: Principles and practice. Nature Reviews Genetics, 13:303314.CrossRefGoogle ScholarPubMed