Hostname: page-component-8448b6f56d-m8qmq Total loading time: 0 Render date: 2024-04-20T04:58:50.723Z Has data issue: false hasContentIssue false

Electronic Transport through Conical Nanosized GaAs Pillars

Published online by Cambridge University Press:  17 March 2015

Thorben Bartsch
Affiliation:
Institute for Nanostructure and Solid-State Physics at the University of Hamburg, Jungiusstraße 11, 20355 Hamburg, Germany
Christian Heyn
Affiliation:
Institute for Nanostructure and Solid-State Physics at the University of Hamburg, Jungiusstraße 11, 20355 Hamburg, Germany
Wolfgang Hansen
Affiliation:
Institute for Nanostructure and Solid-State Physics at the University of Hamburg, Jungiusstraße 11, 20355 Hamburg, Germany
Get access

Abstract

We study the electronic transport through epitaxial GaAs nanopillars that are only 16 nm long, with diameters of about 100 nm at the upper and 40 nm at the lower end. The pillars can be considered to be very short conical nanowires embedded in AlGaAs. They represent quantum point contacts between two perfectly lattice matched three-dimensional GaAs charge reservoirs. Distinctive asymmetries are found in the current-voltage characteristics. We associate them with the conical shape of the pillars. Although contact reservoirs and pillars are made from the same material, the transport through the pillars is dominated by tunneling across shallow barriers. This is explained by the quantum size effect on the electronic states within the pillars.

Type
Articles
Copyright
Copyright © Materials Research Society 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Hicks, L. D. and Dresselhaus, M. S., Phys. Rev. B 47, 12727 (1993); Phys. Rev. B 47, 16631(1993).CrossRefGoogle Scholar
Dresselhaus, M. S. and Thomas, I. L., Nature 414, 332 (2001).CrossRefGoogle Scholar
Majumdar, A., Sience 303, 777 (2004).CrossRefGoogle Scholar
Vineis, C. J., Shakouri, A., Majumdar, A., Kanatzidis, M. G., Adv. Mater. 22, 3970 (2010).10.1002/adma.201000839CrossRefGoogle Scholar
Nielsch, K., Bachmann, J., Kimling, J., and Böttner, H., Adv. Energy Mater. 1, 713 (2011).CrossRefGoogle Scholar
Venkatasubramanian, R., Siivola, E., Colpitts, T., and B. O_Qinn, Nature 413, 597 (2001).10.1038/35098012CrossRefGoogle Scholar
Harman, T. C., Taylor, P. J., Walsh, M. P., LaForge, B. E., Science 297, 2229 (2002).CrossRefGoogle Scholar
Hochbaum, A. I., Chen, R., Delgado, R. D., Liang, W., Garnett, E. C., Najarian, M., Majumdar, A. and Yang, P., Nature Letters 451, 163 (2007).10.1038/nature06381CrossRefGoogle Scholar
Poudel, B., Hao, Q., Ma, Y., Lan, Y., Minnich, A., Yu, B., Yan, X., Wang, D., Muto, A., Vashaee, D., Chen, X., Liu, J., Dresselhaus, M., Chen, G. and Ren, Z., Science 320, 634 (2008).CrossRefGoogle Scholar
O’Dwyer, M. F., Humphrey, T. E., and Linke, H., Nanotechnology 17, 338 (2006).CrossRefGoogle Scholar
Wu, P.M., Gooth, J., Zianni, X., Svensson, S.F., Gluschke, J.G., Dick, K.A., Thelander, C., Nielsch, K., and Linke, H., Nano Letters 13, 4080 (2013).10.1021/nl401501jCrossRefGoogle Scholar
Humphrey, T. E. and Linke, H., Phys. Rev. Lett. 94, 096601 (2005).CrossRefGoogle Scholar
Thierschmann, H., Henke, M., Knorr, J., Maier, L., Heyn, Ch., Hansen, W., Buhmann, H., and Molenkamp, L. M., New Journal of Physics 15, 123010 (2013).CrossRefGoogle Scholar
van Wees, B.J., Houten, H., Beenakker, C.W.J., Williamson, J.G., Kouwenhoven, L.P., Marel, D., and Foxon, C.T., Phys. Rev. Lett. 60, 848 (1988).CrossRefGoogle Scholar
Wharam, D.A., Thornton, T.J., Newbury, R., Pepper, M., Ahmed, H., Frost, J.E.F., Hasko, D.G., Peacock, D.C., Ritchie, D.A., and Jones, G.A.C., J. Phys. C 21, L209 (1988).CrossRefGoogle Scholar
Molenkamp, L.W., van Houten, H., Beenakker, C.W.J., Eppenga, R., and Foxon, C.T., Phys. Rev. Lett. 65, 1052 (1990).CrossRefGoogle Scholar
Wyss, R.A., Eugster, C.C., del Alamo, J.A., Hu, Qing, Rooks, M.J. and Melloch, M.R., Appl. Phys. Lett. 66, 1144 (1995).CrossRefGoogle Scholar
Bartsch, Th., Schmidt, M., Heyn, Ch., and Hansen, W.. Phys. Rev. Lett. 108, 075901 (2012).CrossRefGoogle Scholar
Bartsch, Th., Wetzel, A., Sonnenberg, D., Schmidt, M., Heyn, Ch., and Hansen, W., Phys. Status Solidi A 210, 161 (2013).CrossRefGoogle Scholar
Jeong, C. and Lundstrom, M., Appl. Phys. Lett. 100, 233109 (2012).CrossRefGoogle Scholar
Heyn, Ch., Stemmann, A., and Hansen, W., Appl. Phys. Lett. 95, 173110 (2009).CrossRefGoogle Scholar
Stemmann, A., Köppen, T., Grave, M., Wildfang, S., Mendach, S., Hansen, W., and Heyn, Ch., J. Appl. Phys. 106, 064315 (2009).10.1063/1.3225759CrossRefGoogle Scholar
Nemcsics, A., Heyn, Ch., Toth, L., Dobos, L., Stemmann, A., and Hansen, W., J. Cryst. Growth 58, 335 (2011).Google Scholar
Heyn, Ch., Schnüll, S., and Hansen, W., J. Applied Physics 115, 024309 (2014).CrossRefGoogle Scholar
Bartsch, Th., Sonnenberg, D., Strelow, Ch., Heyn, Ch., and Hansen, W., J. of Elec. Mat. 43, 1972 (2014).CrossRefGoogle Scholar
Zhu, Q.S., Mou, S.M., Zhou, X.C., and Zhong, Z.T., Appl. Phys. Lett. 62, 2813 (1993).CrossRefGoogle Scholar
Simmons, J.G., J. Appl. Phys. 34, 1793 (1963).CrossRefGoogle Scholar