Hostname: page-component-8448b6f56d-cfpbc Total loading time: 0 Render date: 2024-04-23T12:57:09.167Z Has data issue: false hasContentIssue false

Soil water content, runoff and soil loss prediction in a small ungauged agricultural basin in the Mediterranean region using the Soil and Water Assessment Tool

Published online by Cambridge University Press:  20 May 2014

M. C. RAMOS
Affiliation:
Department of Environment and Soil Sciences, University of Lleida, Av Rovira Roure, 191, E-25198 Lleida, Spain
J. A. MARTÍNEZ-CASASNOVAS*
Affiliation:
Department of Environment and Soil Sciences, University of Lleida, Av Rovira Roure, 191, E-25198 Lleida, Spain
*
*To whom all correspondence should be addressed. Email: j.martinez@macs.udl.cat

Summary

The aim of the present work was to evaluate the possibilities of using sub-basin data for calibration of the Soil and Water Assessment Tool (SWAT) model in a small (46 ha) ungauged basin (i.e. where the water flow is not systematically measured) and its response. This small basin was located in the viticultural Anoia-Penedès region (North-east Spain), which suffers severe soil erosion. The data sources were: daily weather data from an observatory located close to the basin; a detailed soil map of Catalonia; a 5-m resolution digital elevation model (DEM); a crop/land use map derived from orthophotos taken in 2010 and an additional detailed soil survey (40 points) within the basin, which included properties such as texture, soil organic carbon, electrical conductivity, bulk density and water retention capacity at −33 and −1500 kPa. A sensitivity analysis was performed to identify and rank the sensitive parameters that affect the hydrological response and sediment yield to changes of model input parameters. A 1-year calibration and 1-year validation were carried out on the basis of soil moisture measured at 0·20-m intervals from depths of 0·10 to 0·90 m in two selected sub-basins, and data related to estimations of runoff and sediment concentrations in runoff collected in the same sub-basins. The present paper shows a methodological approach for calibrating SWAT in small ungauged basins using soil water content measurements and runoff samples collected within the basin. The SWAT satisfactorily predicted the average soil water content, runoff and soil loss for moderate intensity events recorded during the study periods. However, it was not satisfactory for high-intensity events which would require exploring the possibilities of using sub-daily information as an input model parameter.

Type
Crops and Soils Research Papers
Copyright
Copyright © Cambridge University Press 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Allen, R. G., Pereira, L. S., Raes, D. & Smith, M. (1998). Crop Evapotranspiration. Guidelines for Computing Crop Water Requirements. FAO Irrigation and Drainage Paper, no. 56. Rome: FAO.Google Scholar
Allison, L. E. (1965). Organic carbon. In Methods of Soil Analysis. Part 2 (Eds Black, C. A., Evans, D. D., Ensminger, L. E., White, J. L., Clark, F. E. & Dinauer, R. C.), pp. 13671378. Madison, WI, USA: American Society of America.Google Scholar
Arnold, J. G., Allen, P. M., Volk, M., Williams, J. R. & Bosch, D. D. (2010). Assessment of different representations of spatial variability on SWAT model performance. Transactions of the ASABE 53, 14331443.Google Scholar
Bagnold, R. A. (1977). Bed load transport by natural rivers. Water Resources Research 13, 303312.CrossRefGoogle Scholar
Bienes, R., Marqués, M. J. & Ruiz-Colmenero, M. (2012). Herbaceous crops, vineyards and olive groves. The traditional land management and its impact on water erosion. Cuadernos de Investigación Geográfica 38, 4974.Google Scholar
Bogena, H., Diekkrüger, B., Klingel, R., Jantos, K. & Thein, J. (2003). Analysing and modelling the solute and sediment transport in the catchment of the Wahnbach River. Physics and Chemistry of the Earth 28, 227237.Google Scholar
Casalí, J., Gastesi, R., Álvarez-Mozos, J., De Santisteban, L. M., Del Valle de Lersundi, J., Giménez, R., Larrañaga, A., Goñi, M., Agirre, U., Campo, M. A., López, J. J. & Donézar, M. (2008). Runoff, erosion, and water quality of agricultural basins in central Navarre (Spain). Agricultural Water Management 95, 11111128.Google Scholar
Castillo, V. M., Gómez-Plaza, A. & Martínez-Mena, M. (2003). The role of antecedent soil water content in the runoff response of semiarid catchments: a simulation approach. Journal of Hydrology 284, 114130.Google Scholar
Cerdà, A. (1997). Seasonal changes of the infiltration rates in a Mediterranean scrubland on limestone. Journal of Hydrology 198, 209225.Google Scholar
Cerdà, A. (2009). Erosión y Degradación del Suelo Agrícola en España. Valencia, Spain: Publ. Universidad de Valencia.Google Scholar
Cerdan, O., Govers, G., Le Bissonnais, Y., Van Oost, K., Poesen, J., Saby, N., Gobin, A., Vacca, A., Quinton, J., Auerswald, K., Klik, A., Kwaad, F. J. P. M., Raclot, D., Ionita, I., Rejman, J., Rousseva, S., Muxart, T., Roxo, M. J. & Dostal, T. (2010). Rates and spatial variations of soil erosion in Europe: a study based on erosion plot data. Geomorphology 122, 167177.Google Scholar
DAR (2008). Mapa de Sòls (1 : 25.000) de l’Àmbit Geogràfic de la Denominació d'Origen Penedès. Vilafranca del Penedès-Lleida, Spain: Departament d'Agricultura, Alimentació i Acció Rural, Generalitat de Catalunya.Google Scholar
De Vente, J. & Poesen, J. (2005). Predicting soil erosion and sediment yield at the basin scale: scale issues and semi-quantitative models. Earth-Science Reviews 71, 95125.Google Scholar
Flanagan, D. C., Ascough Ii, J. C., Nearing, M. A. & Laflen, J. M. (2001). The water erosion prediction project (WEPP) model. In Landscape Erosion and Evolution Modeling (Eds Harmon, R. S. & Doe, W. W. III), pp. 145199. New York: Kluwer Academic/Plenum Publishers.Google Scholar
García-Ruíz, J. M. & López-Bermúdez, F. (2009). La Erosión del Suelo en España. Zaragoza, Spain: Sociedad española de Geomorfología.Google Scholar
Gee, G. W. & Bauder, J. W. (1986). Particle-size analysis. In Methods of Soil Analysis. Part 1, 2nd edn (Eds Klute, A., Campbell, G. S., Jackson, R. D., Mortland, M. M. & Nielsen, D. R.), pp. 383412. Madison, WI, USA: American Society of Agronomy.Google Scholar
Gevaert, V., Van Griensven, A., Holvoet, K., Seuntjens, P. & Vanrollegehm, P. A. (2008). SWAT developments and recommendations for modelling agricultural pesticide mitigation measures in river basins. Hydrological Sciences Journal 53, 10751089.Google Scholar
Gikas, G. D., Yiannakopoulou, T. & Tsihrintzis, V. A. (2006). Modeling of non-point source pollution in a Mediterranean drainage basin. Environmental Modeling and Assessment 11, 219233.Google Scholar
Grimm, M., Jones, R. J. A., Rusco, E. & Montanarella, L. (2003). Soil Erosion Risk in Italy: a Revised USLE Approach. European Soil Bureau Research Report No. 11, EUR 20677 EN. Luxembourg: Office for Official Publications of the European Communities.Google Scholar
Gupta, H. V., Sorooshian, S. & Yapo, P. O. (1999). Status of automatic calibration for hydrologic models: comparison with multilevel expert calibration. Journal of Hydrologic Engineering 4, 135143.CrossRefGoogle Scholar
Haregeweyn, N., Poesen, J., Verstraeten, G., Govers, G., De Vente, J., Nyssen, J., Deckers, J. & Moeyersons, J. (2013). Assessing the performance of a spatially distributed soil erosion and sediment delivery model (WATEM/SEDEM) in Northern Ethiopia. Land Degradation and Development 24, 188204.Google Scholar
Hargreaves, G. L., Hargreaves, G. H. & Riley, J. P. (1985). Agricultural benefits for Senegal River Basin. Journal of Irrigation and Drainage Engineering 111, 113124.Google Scholar
IUSS Working Group WRB (2006). World Reference Base for Soil Resources 2006. World Soil Resources Reports No. 103. Rome: FAO.Google Scholar
Kirkby, M. J., Irvine, B. J., Jones, R. J. A., Govers, G. & The Pesera Team (2008). The PESERA coarse scale erosion model for Europe I. – Model rationale and implementation. European Journal of Soil Science 59, 12931306.Google Scholar
Klute, A. (1986). Water retention: laboratory methods. In Methods of Soil Analysis. Part 1, 2nd edn (Eds Klute, A., Campbell, G. S., Jackson, R. D., Mortland, M. M. & Nielsen, D. R.), pp. 635662. Madison, WI, USA: American Society of Agronomy.CrossRefGoogle Scholar
Knisel, W. G. (1980). CREAMS: A Fieldscale Model for Chemical, Runoff, and Erosion from Agricultural Management Systems. Conservation Report No. 26. Washington, DC: USDA, Science and Education Administration.Google Scholar
Laloy, E. & Bielders, C. L. (2009). Modelling intercrop management impact on runoff and erosion in a continuous maize cropping system: part I. Model description, global sensitivity analysis and Bayesian estimation of parameter identifiability. European Journal of Soil Science 60, 10051021.Google Scholar
Lee, M. S., Park, G., Park, M. J., Park, J. Y., Lee, J. W. & Kim, S. J. (2010). Evaluation of non-point source pollution reduction by applying best management practices using a SWAT model and QuickBird high resolution satellite imagery. Journal of Environmental Science 22, 826833.Google Scholar
Leh, M., Bajwa, S. & Chaubey, I. (2013). Impact of land use change on erosion risk: an integrated remote sensing, geographic information system and modelling methodology. Land Degradation and Development 24, 409421.Google Scholar
Li, M. X., Ma, Z. G. & Du, J. W. (2010). Regional soil moisture simulation for Shaanxi Province using SWAT model validation and trend analysis. Science China: Earth Sciences 53, 575590.Google Scholar
Licciardello, F., Zema, D. A., Zimbone, S. M. & Bingner, R. L. (2007). Runoff and soil erosion evaluation by the AnnAGNPS model in a small Mediterranean watershed. Transactions of the ASABE 50, 15851593.Google Scholar
Licciardello, F., Rossi, C. G., Srinivasan, R., Zimbone, S. M. & Barbagallo, S. (2011). Hydrologic evaluation of a mediterranean watershed using the SWAT model with multiple PET estimation methods. Transactions of the ASABE 54, 16151625.Google Scholar
Maetens, W., Vanmaercke, M., Poesen, J., Jankauskas, B., Jankauskien, G. & Ionita, I. (2012). Effects of land use on annual runoff and soil loss in Europe and the Mediterranean: a meta-analysis of plot data. Progress in Physical Geography 36, 599653.Google Scholar
Mannaerts, C. M. & Gabriels, D. (2000). Rainfall erosivity in Cape Verde. Soil and Tillage Research 55, 207212.Google Scholar
Mannering, J. V. (1981). The use of soil loss tolerance as a strategy for soil conservation. In Soil Conservation: Problems and Prospects (Ed. Morgan, R. P. C.), pp. 337349. New York: John Wiley & Sons.Google Scholar
Marquez, A. M. & Guevara-Pérez, E. (2010). Comparative analysis of erosion modeling techniques in a basin of Venezuela. Journal of Urban and Environmental Engineering 4, 81104.CrossRefGoogle Scholar
Martínez-Casasnovas, J. A., Ramos, M. C. & García-Hernández, D. (2009). Effects of land-use changes in vegetation cover and sidewall erosion in a gully head of the Penedès region (northeast Spain). Earth Surface Processes and Landforms 34, 19271937.Google Scholar
Martínez-Casasnovas, J. A., Ramos, M. C. & Benites, G. (2013). Soil and water assessment tool soil loss simulation at the sub-basin scale in the Alt Penedès-Anoia vineyard region (NE Spain) in the 2000s. Land Degradation and Development doi: 10.1002/ldr.2240.CrossRefGoogle Scholar
Morgan, R. P. C. (2001). A simple approach to soil loss prediction: a revised Morgan–Morgan–Finney model. Catena 44, 305322.CrossRefGoogle Scholar
Morgan, R. P. C., Quinton, J. N., Smith, R. E., Govers, G., Poesen, J. W. A., Auerswald, K., Chisci, G., Torri, D. & Styczen, M. E. (1998). The European soil erosion model (EUROSEM): a dynamic approach for predicting sediment transport from fields and small catchments. Earth Surface Processes and Landforms 23, 527544.Google Scholar
Moriasi, D. N., Arnold, J. G., Van Liew, M. W., Bingner, R. L., Harmel, R. D. & Veith, T. L. (2007). Model evaluation guidelines for systematic quantification of accuracy in watershed simulations. Transactions of the ASABE 50, 885900.Google Scholar
Mukundan, R., Radcliffe, D. E. & Risse, L. M. (2010). Spatial resolution of soil data and channel erosion effects on SWAT model prediction of flow and sediment. Journal of Soil and Water Conservation 65, 92104.Google Scholar
Narasimhan, B., Srinivasan, R., Arnold, J. G. & Di Luzio, M. (2005). Estimation of long-term soil moisture using a distributed parameter hydrologic model and verification using remotely sensed data. Transactions of the ASAE 48, 11011113.Google Scholar
Nash, J. E. & Sutcliffe, J. V. (1970). River flow forecasting through conceptual models: part I. A discussion of principles. Journal of Hydrology 10, 282290.Google Scholar
Nearing, M. A., Jetten, V., Baffaut, C., Cerdan, O., Couturier, A., Hernandez, M., Le Bissonnais, Y., Nichols, M. H., Nunes, J. P., Renschler, C. S., Souchère, V. & Van Oost, K. (2005). Modeling response of soil erosion and runoff to changes in precipitation and cover. Catena 61, 131154.Google Scholar
Neitsch, S. L., Arnold, J. G., Kiniry, J. R. & Williams, J. R. (2011). Soil and Water Assessment Tool: Theoretical Documentation Version 2009. Texas Water Resources Institute technical Report No. 406. College Station, Texas, USA: Texas A&M University System. Available from: http://twri.tamu.edu/reports/2011/tr406.pdf (accessed March 2014).Google Scholar
Novara, A., Gristina, L., Saladino, S. S., Santoro, A. & Cerdà, A. (2011). Soil erosion assessment on tillage and alternative soil managements in a Sicilian vineyard. Soil and Tillage Research 117, 140147.Google Scholar
Parajuli, P. B. (2011). Effects of spatial heterogeneity on hydrologic responses at watershed scale. Journal of Environmental Hydrology 19, 118.Google Scholar
Paroissien, J., Lagacherie, P. & Le Bissonnais, Y. (2010). A regional-scale study of multi-decennial erosion of vineyard fields using vine-stock unearthing–burying measurements. Catena 82, 159168.Google Scholar
Pla, I. (1983). Metodología para la Caracterización Física con Fines de Diagnóstico de Problemas de Manejo y Conservación de Suelos en Condiciones Tropicales. Alcace 32. Maracay, Venezuela: Revista de la Facultad de Agronomia UCV.Google Scholar
Potter, C. & Hiatt, S. (2009). Modelling river flows and sediment dynamics for the Laguna de Santa Rosa watershed in Northern California. Journal of Soil and Water Conservation 64, 383393.Google Scholar
Ramos, M. C. & Martínez-Casasnovas, J. A. (2006). Impact of land levelling on soil moisture and runoff variability in vineyards under different rainfall distributions in a Mediterranean climate and its influence on crop productivity. Journal of Hydrology 321, 131146.Google Scholar
Ramos, M. C. & Martínez-Casasnovas, J. A. (2007). Soil loss and soil water content affected by land levelling in Penedès vineyards, NE Spain. Catena 71, 210217.CrossRefGoogle Scholar
Ramos, M. C. & Martínez-Casasnovas, J. A. (2009). Impacts of annual precipitation extremes on soil and nutrient losses in vineyards of NE Spain. Hydrological Processes 23, 224235.Google Scholar
Ramos, M. C. & Martínez-Casasnovas, J. A. (2010). Effects of field reorganisation on the spatial variability of runoff and erosion rates in vineyards of northeastern Spain. Land Degradation and Development 21, 112.Google Scholar
Renard, K. G., Foster, G. R., Weesies, G. A., McCool, D. K. & Yoder, D. C. (coordinators) (1997). Predicting Soil Erosion by Water: A Guide to Conservation Planning with the Revised Universal Soil Loss Equation (RUSLE). USDA Agriculture Handbook No 703. Washington, DC: USDA.Google Scholar
Rhoades, J. D. (1982). Soluble salts. In Methods of Soil Analysis: Part 2 (Eds Page, A. L., Miller, R. H., Keeney, D. R., Baker, D. E., Ellis, R. & Rhoades, J. D.), pp. 167178. Madison, WI: ASA and SSSA.Google Scholar
Roebeling, P. C., Rocha, J., Nunes, J. P., Fidelis, T., Aves, H. & Fonseca, S. (2014). Using the Soil and Water Assessment Tool to estimate dissolved inorganic nitrogen water pollution abatement cost functions in Central Portugal. Journal of Environmental Quality 43, 168176.Google Scholar
Rossi, C. G., Srinivasan, R., Jirayoot, K., Le Duc, T., Souvannabouth, P., Binh, N. & Gassman, P. W. (2009). Hydrologic evaluation of the lower Mekong river basin with the soil and water assessment tool model. International Agricultural Engineering Journal 18, 113.Google Scholar
Shen, Z. Y., Gong, Y. W., Li, Y. H., Hong, Q., Xu, L. & Liu, R. M. (2009). A comparison of WEPP and SWAT for modeling soil erosion of the Zhangjiachong Watershed in the Three Gorges Reservoir Area. Agricultural Water Management 96, 14351442.Google Scholar
Singh, G., Babu, R., Narain, P., Bhushan, L. S. & Abrol, I. P. (1992). Soil erosion rates in India. Journal of Soil and Water Conservation 47, 9799.Google Scholar
Soil Survey Staff (2006). Keys to Soil Taxonomy, 10th edn. Washington, DC: United States Department of Agrculture, Natural Resources Conservation Service.Google Scholar
Tibebe, D. & Bewket, W. (2011). Surface runoff and soil erosion estimation using the SWAT model in the Keleta Watershed, Ethiopia. Land Degradation and Development 22, 551564.Google Scholar
USDA-SCS (1985). National Engineering Handbook, Section 4 – Hydrology . Washington, DC: USDA-SCS.Google Scholar
Van Rompaey, A. J. J., Verstraeten, G., Van Oost, K., Govers, G. & Poesen, J. (2001). Modelling mean annual sediment yield using a distributed approach. Earth Surface Processes and Landforms 26, 12211236.Google Scholar
Verheijen, F. G. A., Jones, R. J. A., Rickson, R. J. & Smith, C. J. (2009). Tolerable versus actual soil erosion rates in Europe. Earth-Science Reviews 94, 2338.CrossRefGoogle Scholar
Verstraeten, G. & Poesen, J. (2001). Factors controlling sediment yield for small intensively cultivated catchments in a temperate humid climate. Geomorphology 40, 123144.Google Scholar
Wicherek, S. (1991). Viticulture and soil erosion in the north of Parisian Basin. Example: the mid Aisne region. Zeitschrift fur Geomorphologie, Supplementband 83, 115126.Google Scholar
Williams, J. R. & Berndt, H. D. (1977). Sediment yield prediction based on watershed hydrology. Transactions of the ASAE 20, 11001104.CrossRefGoogle Scholar
Wischmeier, W. H., Johnson, C. B. & Cross, B. V. (1971). A soil erodibility nomograph for farmland and construction sites. Journal of Soil and Water Conservation 26, 189193.Google Scholar
WRB (IUSS Working Group WRB) (2006). World Reference Base for Soil Resources 2006. World Soil Resources Reports No. 103. Rome: FAO.Google Scholar
Young, R. A., Onstad, C. A., Bosch, D. D. & Anderson, W. P. (1989). AGNPS: a non-point-source pollution model for evaluating agricultural watersheds. Journal of Soil and Water Conservation 44, 168173.Google Scholar
Zhang, Y., Wei, H. & Nearing, M. A. (2011). Effects of antecedent soil moisture on runoff modeling in small semiarid watersheds of southeastern Arizona. Hydrology and Earth System Sciences 15, 31713179.Google Scholar