Hostname: page-component-8448b6f56d-c4f8m Total loading time: 0 Render date: 2024-04-23T14:22:17.499Z Has data issue: false hasContentIssue false

Shell sculpture formation in bivalves of the genus Hiatella under different temperature conditions

Published online by Cambridge University Press:  13 March 2015

Peter Lezin*
Affiliation:
Zoological Institute RAS, White Sea Biological Station, Saint-Petersburg 199034, Russian Federation
Lyudmila Flyachinskaya
Affiliation:
Zoological Institute RAS, White Sea Biological Station, Saint-Petersburg 199034, Russian Federation
*
Correspondence should be addressed to: P. Lezin, Zoological Institute RAS, White Sea Biological Station, Saint-Petersburg 199034, Russian Federation email: Peter.Lezin@zin.ru

Abstract

This study examines the effect of water temperature on the formation of shell sculpture in young molluscs of the genus Hiatella. The larvae of H. arctica and H. gallicana were maintained under laboratory conditions at different temperature regimes. The animals were reared from late veligers to juveniles with a shell length of 700 μm. The results of the experiment showed that the shell sculpture, which is a diagnostic species character, was developed to various degrees at different temperatures. The larvae of each species grew to juveniles with variously pronounced shell sculptures ranging from a complete absence of sculpturing to its maximum development. The individuals with smooth shells like those of H. gallicana were the most abundant among the molluscs reared at +5°С. At +12°С, all molluscs formed ridges and two rows of long spines in the posterior portion of the shell, which is typical for H. arctica. At +8°С, the molluscs developed various intermediate forms of shell sculpture. It was, therefore, demonstrated that the development and prominence of shell sculpture is determined by environmental temperature. These results are discussed with regards to the validity of using shell sculpture as a taxonomic character for species in the genus Hiatella.

Type
Research Article
Copyright
Copyright © Marine Biological Association of the United Kingdom 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Abbott, R.T. (1955) American seashells. New York, NY: D. Van Nostrand Company.Google Scholar
Berger, V., Dahle, S., Galaktionov, K., Kosobokova, X., Naumov, A., Rat'kova, T., Savinov, V. and Savinova, T. (2001) White Sea. Ecology and environment. St. Petersburg/Tromsø: Derzavets Publisher.Google Scholar
Beu, A.G. (1971) New light on the variation and taxonomy of the bivalve Hiatella. New Zealand Journal of Geology and Geophysics 14, 6466.CrossRefGoogle Scholar
Britton, J.C. (1995) The relationship between position on shore and shell ornamentation in two size-dependent morphotypes of Littorina striata, with an estimate of evaporative water loss in these morphotypes and in Melarhaphe neritoides. Hydrobiologia 309, 129142.CrossRefGoogle Scholar
Cohen, A.L. and Branch, G.M. (1992) Environmentally controlled variation in the structure and mineralogy of Patella granularis shells from the coast of southern Africa: implications for palaeotemperature assessments. Palaeogeography, Palaeoclimatology, Palaeoecology 91, 4957.CrossRefGoogle Scholar
De Wolf, H., Backeljau, T., Van Dongen, S. and Verhagen, R. (1998) Large-scale patterns of shell variation in Littorina striata, a planktonic developing periwinkle from Macaronesia (Mollusca: Prosobranchia). Marine Biology 131, 309317.CrossRefGoogle Scholar
Deryugin, K.M. (1928) Fauna Belogo morja i uslovija ee sushhestvovanija. Leningrad: Gidrologicheskij institut.Google Scholar
Dodd, J.R. (1964) Environmentally controlled variation in the shell structure of a pelecypod species. Journal of Paleontology 38, 10651071.Google Scholar
Flyachinskaya, L.P. and Lezin, P.A. (2006) Using 3D reconstruction method in the investigations of Bivalvia larval development (by the example of Hiatella arctica L.). Proceedings of the Zoological Institute RAS 310, 4550.Google Scholar
Flyachinskaya, L.P. and Lezin, P.A. (2008) Larval and juvenile shell development in the White Sea bivalve Hiatella arctica (Linnaeus, 1767). Zoologiya Bespozvonochnykh (Invertebrate Zoology) 5, 3946. [In Russian with English summary]Google Scholar
Flyachinskaya, L.P. and Lezin, P.A. (2012) Juvenile mollusks development: is it the key for Hiatella species in the White Sea? In Asanovitch, T.A. (ed) Otchetnaja sessija ZIN RAN po itogam rabot 2011 g. St. Petersburg: Zoological inst. RAS, pp. 3233. [In Russian]Google Scholar
Grégoire, Ch. (1964) Thermal changes in the Nautilus shell. Nature 203, 868869.CrossRefGoogle Scholar
Günther, C. and Fedyakov, V.V. (2000) Seasonal changes in the bivalve larval plankton in the White Sea. Senckenbergiana Maritima 30, 141151.CrossRefGoogle Scholar
Hägg, R. (1904) Mollusca und Brachiopoda gesammelt von der swedischen zoologischen Polarexpedition nach Spitzbergen, dem nordöstlichen Grönland und Jan Mayen Im J. 1900. Arkiv för Zoologi 2, 166.Google Scholar
Hunter, W.R. (1949) The structure and behaviour of Hiatella gallicana (Lamarck) and H. arctica (L.) with special reference to the boring habit. Proceedings of the Royal Society of Edinburgh. Section B; Biology 63, 271289.CrossRefGoogle Scholar
Jeffreys, J.G. (1869) British conchology or an account of the Mollusca which now inhabit the British isles and the surrounding seas. London: John Van Voorst, Paternoster Row.Google Scholar
Jørgensen, C.B. (1946) Reproduction and larval development of Danish bottom invertebrates. Lamellibranchia. Meddelelser fra Kommisionen for Danmarks Fiskeriog Havundersogelser. Ser: Plankton 4, 277311.Google Scholar
Keen, A.M. (1971) Sea shells of tropical West America; marine mollusks from Baja California to Peru. Stanford, CA: Stanford University Press.Google Scholar
Lamy, E. (1921) Les théories explicatives de la perforation par les mollusques lithophages et xylophages. Revue Scientifique 59, 423432.Google Scholar
Lebour, M.V. (1938) Notes on the breeding of some lamellibranchs from Plymouth and their larvae. Journal of the Marine Biological Association of the United Kingdom 123, 119145.CrossRefGoogle Scholar
Lezin, P.A., Flyachinskaya, L.P. and Khalaman, V.V. (2010) To the question of species identity of the genus Hiatella mollusks in the White Sea. In Naumov, A.D., Alekseev, A.P. and Sukhotin, A.A. (eds) Problemy izuchenija, racional'nogo ispol'zovanija i ohrany prirodnyh resursov Belogo morja. XI vserossijskaja konferencija, St. Petersburg, 9–11 October 2010. St. Petersburg: ZIN RAS, pp. 101102. [In Russian]Google Scholar
Matveeva, T.A. and Maksimovich, N.V. (1977) Peculiarities of ecology and distribution of Hiatella arctica (Mollusca, Bivalvia, Heterodonta) in the White Sea. Zoologicheskii zhurnal 56, 199204. [In Russian with English summary]Google Scholar
Meyer, H.A. and Möbius, K. (1872) Fauna der Kieler Bucht. Leipzig: Verlag von Vilhelm Engelmann.Google Scholar
Micali, P. and Solustri, C. (2004) Osservazioni su Hiatella rugosa (Linné, 1767) (Bivalvia Hiatellidae) endobionte di poriferi e differenze conchigliari con Hiatella arctica (Linne, 1767). Bollettino Malacologico 40, 4955.Google Scholar
Naumov, A.D. (2006) Clams of the White Sea. Ecological and faunistic analysis. St. Petersburg: ZIN RAS. [In Russian]Google Scholar
Naumov, A.D., Flyachinskaya, L.P. and Khalaman, V.V. (2010) Bivalve mollusks of the Hiatella genus in the White Sea. Zoologicheskii zhurnal 89, 407415. [In Russian with English summary]Google Scholar
Oberlechner, M. (2008) Species delineation and genetic variation of Hiatella “arctica” (Bivalvia, Heterodonta) in the Mediterranean Sea. Vienna: University of Vienna.Google Scholar
Ockelmann, W.K. (1958) The zoology of east Greenland: marine lamellibranchiata. Copenhagen: Biano Lunos Bogtrykkery.Google Scholar
Odhner, N.H. (1914) Notes über die Faune der Adria bei Rovingo. Beiträge zur Kenntnis der Marinen Molluskenfauna von Rovingo in Istriern. Zoologishe Anzeiger 44, 156170.Google Scholar
Oldroyd, I.S. (1978) The marine shells of the west coast of North America. Stanford, CA: Stanford University Press.Google Scholar
Olson, I.C., Kozdon, R., Valley, J.W. and Gilbert, P.U.P.A. (2012) Mollusk shell nacre ultrastructure correlates with environmental temperature and pressure. Journal of the American Chemical Society 134, 73517358.CrossRefGoogle ScholarPubMed
Phillips, B.F., Campbell, N.A. and Wilson, B.R. (1973) A multivariate study of geographic variation in the whelk Dicathais. Journal of Experimental Marine Biology and Ecology 11, 2769.CrossRefGoogle Scholar
Savage, N.B. and Goldberg, R. (1976) Investigation of practical means of distinguishing Mya arenaria and Hiatella sp. larvae in plankton samples. Proceedings of the National Shellfisheries Association 66, 4253.Google Scholar
Simone, L.R.L. and Penchaszadeh, P.E. (2008) Redescription of Hiatella meridionalis D'Orbigni, 1846 (Mollusca, Bivalvia, Hiatellidae) from Argentina. Papéis Avulsos De Zoologia 48, 119127.CrossRefGoogle Scholar
Strauch, F. (1968) Determination of cenozoic sea-temperatures using Hiatella arctica (Linne). Palaeogeography, Palaeoclimatology, Palaeoecology 5, 213233.CrossRefGoogle Scholar
Taylor, J.D. and Reid, D.G. (1990) Shell microstructure and mineralogy of the Littorinidae: ecological and evolutionary significance. Developments in Hydrobiology 56, 199215.CrossRefGoogle Scholar
Thiele, J. (1928) Arktische Loricaten, Gastropoden, Scaphopoden und Bivalven. Jena: Verlag von Gustav Fisher.Google Scholar
Vermeij, G.J. (1973) Morphological patterns in high-intertidal gastropods: adaptive strategies and their limitations. Marine Biology 20, 319346.CrossRefGoogle Scholar
Winckworth, R. (1932) The British marine Mollusca. Journal of Conchology 19, 211252.Google Scholar
Yonge, C.M. (1971) On functional morphology and adaptive radiation in the bivalve superfamily Saxicavacea (Hiatella (=Saxicava), Saxicavella, Panomya, Panope, Cyrtodaria). Malacologia 11, 144.Google Scholar