Hostname: page-component-8448b6f56d-gtxcr Total loading time: 0 Render date: 2024-04-18T05:46:45.724Z Has data issue: false hasContentIssue false

GENERALIZED ALGEBRA-VALUED MODELS OF SET THEORY

Published online by Cambridge University Press:  12 January 2015

BENEDIKT LÖWE*
Affiliation:
Institute for Logic, Language and Computation, Universiteit van Amsterdam and Fachbereich Mathematik, Universität Hamburg
SOURAV TARAFDER*
Affiliation:
Department of Commerce (Morning), St. Xavier’s College and Department of Pure Mathematics, Calcutta University
*
*INSTITUTE FOR LOGIC, LANGUAGE AND COMPUTATION, UNIVERSITEIT VAN AMSTERDAM, POSTBUS 94242, 1090 GE AMSTERDAM, THE NETHERLANDS E-mail: b.loewe@uva.nl, FACHBEREICH MATHEMATIK, UNIVERSITÄT HAMBURG, BUNDESSTRASSE 55, 20146 HAMBURG, GERMANY
DEPARTMENT OF COMMERCE (MORNING), ST. XAVIER’S COLLEGE, 30 MOTHER TERESA SARANI, KOLKATA, 700016, INDIA E-mail: souravt09@gmail.com, DEPARTMENT OF PURE MATHEMATICS, UNIVERSITY OF CALCUTTA, 35 BALLYGUNGE CIRCULAR ROAD, KOLKATA, 700019, INDIA

Abstract

We generalize the construction of lattice-valued models of set theory due to Takeuti, Titani, Kozawa and Ozawa to a wider class of algebras and show that this yields a model of a paraconsistent logic that validates all axioms of the negation-free fragment of Zermelo-Fraenkel set theory.

Type
Research Article
Copyright
Copyright © Association for Symbolic Logic 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

BIBLIOGRAPHY

Bell, J. L. (2005). Set Theory, Boolean-Valued Models and Independence Proofs (third edition). Oxford Logic Guides, Vol. 47. Oxford: Oxford University Press.CrossRefGoogle Scholar
Brady, R. (1971). The consistency of the axioms of abstraction and extensionality in a three valued logic. Notre Dame Journal of Formal Logic, 12, 447453.CrossRefGoogle Scholar
Brady, R., & Routley, R. (1989). The non-triviality of extensional dialectical set theory. In Priest, G., Routley, R., and Norman, J., editors. Paraconsistent Logic: Essays on the Inconsistent. Analytica. Munich: Philosophia Verlag, pp. 415436.CrossRefGoogle Scholar
Carnielli, W. A., & Marcos, J. (2002). A taxonomy of C-systems. In Carnielli, W. A., Coniglio, M. E., and D’Ottaviano, I. M. L., editors. Paraconsistency: The Logical Way to the Inconsistent. Proceedings of the 2nd World Congress on Paraconsistency (WCP 2000). Lecture Notes in Pure and Applied Mathematics, Vol. 228. New York: Marcel Dekker, pp. 194.CrossRefGoogle Scholar
Coniglio, M. E., & da Cruz Silvestrini, L. H. (2014). An alternative approach for quasi-truth. Logic Journal of the IGPL, 22(2), 387410.CrossRefGoogle Scholar
Grayson, R. J. (1979). Heyting-valued models for intuitionistic set theory. In Fourman, M. P., Mulvey, C. J., & Scott, D. S., editors. Applications of Sheaves, Proceedings of the Research Symposium on Applications of Sheaf Theory to Logic, Algebra and Analysis held at the University of Durham, Durham, July 9–21, 1977, Lecture Notes in Mathematics, Vol. 753. Berlin: Springer, pp. 402414.Google Scholar
Libert, T. (2005). Models for paraconsistent set theory. Journal of Applied Logic, 3(1), 1541.CrossRefGoogle Scholar
Marcos, J. (2000). 8k solutions and semi-solutions to a problem of da Costa. Unpublished.Google Scholar
Marcos, J. (2005). On a problem of da costa. In Sica, G., editor. Essays on the Foundations of Mathematics and Logic, Advanced Studies in Mathematics and Logic, Vol. 2. Monza: Polimetrica, pp. 3955.Google Scholar
Ozawa, M. (2007). Transfer principle in quantum set theory. Journal of Symbolic Logic, 72(2), 625648.CrossRefGoogle Scholar
Ozawa, M. (2009). Orthomodular-valued models for quantum set theory. Preprint, arXiv 0908.0367.Google Scholar
Restall, G. (1992). A note on naïve set theory in LP. Notre Dame Journal of Formal Logic, 33(3), 422432.CrossRefGoogle Scholar
Takeuti, G., & Titani, S. (1992). Fuzzy logic and fuzzy set theory. Archive for Mathematical Logic, 32(1), 132.CrossRefGoogle Scholar
Tarafder, S. (2015). Ordinals in an algebra-valued model of a paraconsistent set theory. In Banerjee, M. and Krishna, S., editors. Logic and Its Applications, 6th International Conference, ICLA 2015, Mumbai, India, January 8–10, 2015, Proceedings, Lecture Notes in Computer Science, Vol. 8923. Berlin: Springer-Verlag, pp. 15206.Google Scholar
Titani, S. (1999). A lattice-valued set theory. Archive for Mathematical Logic, 38(6), 395421.CrossRefGoogle Scholar
Titani, S., & Kozawa, H. (2003). Quantum set theory. International Journal of Theoretical Physics, 42(11), 25752602.CrossRefGoogle Scholar
Weber, Z. (2010a). Extensionality and restriction in naive set theory. Studia Logica, 94(1), 87104.CrossRefGoogle Scholar
Weber, Z. (2010b). Transfinite numbers in paraconsistent set theory. Review of Symbolic Logic, 3(1), 7192.CrossRefGoogle Scholar
Weber, Z. (2013). Notes on inconsistent set theory. In Tanaka, K., Berto, F., Mares, E., and Paoli, F., editors. Paraconsistency: Logic and Applications, Logic, Epistemology, and the Unity of Science, Vol. 26. Dordrecht: Springer-Verlag, pp. 315328.CrossRefGoogle Scholar